Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vilma Mantovani is active.

Publication


Featured researches published by Vilma Mantovani.


The Journal of Pathology | 2012

In hepatocellular carcinoma miR-519d is up-regulated by p53 and DNA hypomethylation and targets CDKN1A/p21, PTEN, AKT3 and TIMP2.

Francesca Fornari; Maddalena Milazzo; Pasquale Chieco; Massimo Negrini; Elena Marasco; Giovanni Capranico; Vilma Mantovani; Jessica Marinello; Silvia Sabbioni; Elisa Callegari; Matteo Cescon; Matteo Ravaioli; Carlo M. Croce; Luigi Bolondi; Laura Gramantieri

MiR‐519d belongs to the chromosome 19 miRNA cluster (C19MC), the largest human miRNA cluster. One of its members, miR‐519d, is over‐expressed in hepatocellular carcinoma (HCC) and we characterized its contribution to hepatocarcinogenesis. In HCC cells, the over‐expression of miR‐519d promotes cell proliferation, invasion and impairs apoptosis following anticancer treatments. These functions are, at least in part, exerted through the direct targeting of CDKN1A/p21, PTEN, AKT3 and TIMP2. The mechanisms underlying miR‐519d aberrant expression in HCC were assayed by genomic DNA amplification, methylation analysis and ChIP assay. The aberrant hypomethylation of C19MC and TP53 were respectively identified as an epigenetic change allowing the aberrant expression of miR‐519d and one of the factors able to activate its transcription. In conclusion, we assessed the oncogenic role of miR‐519d in HCC by characterizing its biological functions, including the modulation of response to anticancer treatments and by identifying CDKN1A/p21, PTEN, AKT3 and TIMP2 among its targets. Copyright


Brain | 2010

Melanopsin retinal ganglion cells are resistant to neurodegeneration in mitochondrial optic neuropathies

Chiara La Morgia; Fred N. Ross-Cisneros; Alfredo A. Sadun; Jens Hannibal; Alessandra Munarini; Vilma Mantovani; Piero Barboni; Gaetano Cantalupo; Kevin R. Tozer; Elisa Sancisi; Solange Rios Salomão; Milton N. Moraes; Milton N. Moraes-Filho; Steffen Heegaard; Dan Milea; Poul Kjer; Pasquale Montagna; Valerio Carelli

Mitochondrial optic neuropathies, that is, Leber hereditary optic neuropathy and dominant optic atrophy, selectively affect retinal ganglion cells, causing visual loss with relatively preserved pupillary light reflex. The mammalian eye contains a light detection system based on a subset of retinal ganglion cells containing the photopigment melanopsin. These cells give origin to the retinohypothalamic tract and support the non-image-forming visual functions of the eye, which include the photoentrainment of circadian rhythms, light-induced suppression of melatonin secretion and pupillary light reflex. We studied the integrity of the retinohypothalamic tract in five patients with Leber hereditary optic neuropathy, in four with dominant optic atrophy and in nine controls by testing the light-induced suppression of nocturnal melatonin secretion. This response was maintained in optic neuropathy subjects as in controls, indicating that the retinohypothalamic tract is sufficiently preserved to drive light information detected by melanopsin retinal ganglion cells. We then investigated the histology of post-mortem eyes from two patients with Leber hereditary optic neuropathy and one case with dominant optic atrophy, compared with three age-matched controls. On these retinas, melanopsin retinal ganglion cells were characterized by immunohistochemistry and their number and distribution evaluated by a new protocol. In control retinas, we show that melanopsin retinal ganglion cells are lost with age and are more represented in the parafoveal region. In patients, we demonstrate a relative sparing of these cells compared with the massive loss of total retinal ganglion cells, even in the most affected areas of the retina. Our results demonstrate that melanopsin retinal ganglion cells resist neurodegeneration due to mitochondrial dysfunction and maintain non-image-forming functions of the eye in these visually impaired patients. We also show that in normal human retinas, these cells are more concentrated around the fovea and are lost with ageing. The current results provide a plausible explanation for the preservation of pupillary light reaction despite profound visual loss in patients with mitochondrial optic neuropathy, revealing the robustness of melanopsin retinal ganglion cells to a metabolic insult and opening the question of mechanisms that might protect these cells.


Pancreas | 2003

Mutations of the CFTR gene in pancreatic disease.

Raffaele Pezzilli; Antonio Maria Morselli-Labate; Vilma Mantovani; Elisabetta Romboli; Paola Selva; Marina Migliori; Roberto Corinaldesi; Lucio Gullo

Introduction An association has been found between CFTR gene mutations and chronic pancreatitis; however, there is a lack of information about the frequency of CFTR gene mutations in acute pancreatitis and in pancreatic cancer. Aim To prospectively evaluate the prevalence of CFTR gene mutations in acute pancreatitis, chronic pancreatitis, and pancreatic cancer. Methodology Ninety-eight consecutive patients were studied and divided into 3 groups: 34 patients with acute pancreatitis, 46 patients with chronic pancreatitis, and 18 patients with pancreatic cancer. The mutation analysis of the CFTR gene was carried out using diagnostic commercial kits for the simultaneous detection of 29 mutations and Tn polymorphism. Results Among the 98 patients studied, 12 (12.2%) had CFTR gene mutations: 2 of the 34 patients (5.9%) with acute pancreatitis, 9 of the 46 (19.6%) with chronic pancreatitis, and 1 of the 18 (5.6%) with pancreatic cancer. All the mutations were found in heterozygosis (2 &Dgr;F508, 1 W1282X, and 9 T5 allele). Conclusion Our prospective study adds further information about the frequency of CFTR mutations in patients with a single episode of acute pancreatitis. Furthermore, our results suggest an association of CFTR gene mutations with chronic alcoholic pancreatitis and emphasize the need for a multicenter study, possibly multinational, to conclusively establish the role of CFTR mutations as a genetic susceptibility factor for this disease.


Neurology | 1991

Leber's hereditary optic neuropathy Genetic, biochemical, and phosphorus magnetic resonance spectroscopy study in an Italian family

Pietro Cortelli; Pasquale Montagna; P. Avoni; S. Sangiorgi; Nereo Bresolin; Maurizio Moggio; P. Zaniol; Vilma Mantovani; Piero Barboni; Bruno Barbiroli; Elio Lugaresi

Three siblings of a family affected with Lebers hereditary optic neuropathy (LHON) showed a mitochondrial DNA mutation at position 11778. The lactate response to a standardized effort was increased in only one case. Muscle biopsies and biochemistry of muscle and platelet mitochondrial enzymes were normal. All patients showed an altered energy metabolism during exercise and during recovery after exercise on phosphorus 31-magnetic resonance spectroscopy (31P-MRS) of muscle. Brain 31P-MRS showed a decreased energy reserve (decreased PCr/Pi ratio) in all patients. 31P-MRS noninvasively demonstrated an altered mitochondrial energy metabolism in muscle and, for the first time, in the brains of LHON patients.


The Journal of Neuroscience | 2012

TRPV1 Channels Regulate Cortical Excitability in Humans

Francesco Mori; Michele Ribolsi; Hajime Kusayanagi; Fabrizia Monteleone; Vilma Mantovani; Fabio Buttari; Elena Marasco; Giorgio Bernardi; Mauro Maccarrone; Diego Centonze

Studies in rodents show that transient receptor potential vanilloid 1 (TRPV1) channels regulate glutamate release at central and peripheral synapses. In humans, a number of nonsynonymous single-nucleotide polymorphisms (SNPs) have been described in the TRPV1 gene, and some of them significantly alter the functionality of the channel. To address the possible role of TRPV1 channels in the regulation of synaptic transmission in humans, we studied how TRPV1 genetic polymorphisms affect cortical excitability measured with transcranial magnetic stimulation (TMS). Two SNPs of the TRPV1 gene were selected and genotyped (rs222747 and rs222749) in a sample of 77 healthy subjects. In previous cell expression studies, the “G” allele of rs222747 was found to enhance the activity of the channel, whereas rs222749 had no functional effect. Allelic variants in the rs222749 region were not associated with altered cortical response to single, paired, and repetitive TMS. In contrast, subjects homozygous for the G allele in rs222747 exhibited larger short-interval intracortical facilitation (a measure of glutamate transmission) explored through paired-pulse TMS of the primary motor cortex. Recruitment curves, short-interval intracortical inhibition, intracortical facilitation, and long-interval intracortical inhibition were unchanged. LTP- and LTD-like plasticity explored through intermittent or continuous theta-burst stimulation was also similar in the “G” and “non-G” subjects. To our knowledge, our results provide the first evidence that TRPV1 channels regulate cortical excitability to paired-pulse stimulation in humans.


Leukemia Research | 2011

A polymorphism in the chromosome 9p21 ANRIL locus is associated to Philadelphia positive acute lymphoblastic leukemia

Ilaria Iacobucci; Marco Sazzini; Paolo Garagnani; Anna Ferrari; Alessio Boattini; Annalisa Lonetti; Cristina Papayannidis; Vilma Mantovani; Elena Marasco; Emanuela Ottaviani; Simona Soverini; Domenico Girelli; Donata Luiselli; Marco Vignetti; Michele Baccarani; Giovanni Martinelli

Little is known about alterations of cyclin dependent kinase inhibitors p15INK4B, p16INK4A and of MDM2 inhibitor p14ARF due to single nucleotide polymorphisms (SNPs) located within the CDKN2A/B genes and/or neighbouring loci. In order to investigate the potential involvement of such common DNA sequence variants in leukemia susceptibility, an association study was performed by genotyping 23 SNPs spanning the MTAP, CDKN2A/B and CDKN2BAS loci, as well as relative intergenic regions, in a case-control cohort made up of 149 leukemia patients, including Philadelphia positive (Ph(+)) acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) samples, and 183 healthy controls. rs564398, mapping to the CDKN2BAS locus that encodes for ANRIL antisense non-coding RNA, showed a statistically significant correlation with the ALL phenotype, with a risk pattern that was compatible with an overdominant model of disease susceptibility and a OR of 2 (95% CI, 1.20-3.33; p=7.1×10(-3)). We hypothesized that this association reflects the capability of some ANRIL polymorphisms to contribute to its transcription changes responsible for alterations of CDKN2A/B expression profiles, thus leading to abnormal proliferative boosts and consequent increased ALL susceptibility.


Annals of the Rheumatic Diseases | 1999

HLA-DRB1 alleles associated with polymyalgia rheumatica in northern Italy: correlation with disease severity.

Carlo Salvarani; Luigi Boiardi; Vilma Mantovani; Andrea Ranzi; Fabrizio Cantini; Ignazio Olivieri; Michela Bragliani; Elisa Collina; Pierluigi Macchioni

OBJECTIVE To examine the association of HLA-DRB1 alleles with polymyalgia rheumatica (PMR) in a Mediterranean country and to explore the role of HLA-DRB1 genes in determining disease severity. METHODS A five year prospective follow up study of 92 consecutive PMR patients diagnosed by the secondary referral centre of rheumatology of Reggio Emilia, Italy was conducted. HLA-DRB1 alleles were determined in the 92 patients, in 29 DR4 positive rheumatoid arthritis (RA) patients, and in 148 controls from the same geographical area by polymerase chain reaction amplification and oligonucleotide hybridisation. RESULTS No significant differences were observed in the frequencies of HLA-DRB1 types and in the expression of HLA-DRB 70–74 shared motif between PMR and controls. The frequency of the patients with double dose of epitope was low and not significantly different in PMR and in controls. No significant differences in the distribution of HLA-DR4 subtypes were observed between DR4+ PMR, DR+ RA, and DR4+ controls. Results of the univariate analysis indicated that an erythrocyte sedimentation rate (ESR) at diagnosis > 72 mm 1st h, the presence of HLA-DR1, DR10, rheumatoid epitope, and the type of rheumatoid epitope were significant risk factors associated with relapse/recurrence. Cox proportional hazards modelling identified two variables that independently increased the risk of relapse/recurrence: ESR at diagnosis > 72 mm 1st h (RR=1.5) and type 2 (encoded by a non-DR4 allele) rheumatoid epitope (RR=2.7). CONCLUSION These data from a Mediterranean country showed no association of rheumatoid epitope with PMR in northern Italian patients. A high ESR at diagnosis and the presence of rheumatoid epitope encoded by a non-DR4 allele are independent valuable markers of disease severity.


European Journal of Endocrinology | 2011

A combination of polymorphisms in HSD11B1 associates with in vivo 11β-HSD1 activity and metabolic syndrome in women with and without polycystic ovary syndrome

Alessandra Gambineri; Federica Tomassoni; Alessandra Munarini; Roland H. Stimson; Roberto Mioni; Uberto Pagotto; Karen E. Chapman; Ruth Andrew; Vilma Mantovani; Renato Pasquali; Brian R. Walker

OBJECTIVE Regeneration of cortisol by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) within liver and adipose tissue may be of pathophysiological importance in obesity and the metabolic syndrome. single nucleotide polymorphisms (SNPs) in HSD11B1, the gene encoding 11β-HSD1, have been associated with type 2 diabetes and hypertension in population-based cohort studies, and with hyperandrogenism in patients with the polycystic ovary syndrome (PCOS). However, the functional consequences of these SNPs for in vivo 11β-HSD1 expression and activity are unknown. METHODS We explored associations of well-characterised hormonal and metabolic phenotypes with two common SNPs (rs846910 and rs12086634) in HSD11B1 in 600 women (300 with PCOS) and investigated 11β-HSD1 expression and activity in a nested study of 40 women from this cohort. RESULTS HSD11B1 genotypes (as single SNPs and as the combination of the two minor allele SNPs) were not associated with PCOS. Women who were heterozygous for rs846910 A and homozygous for rs12086634 T (GA, TT genotype) had a higher risk of metabolic syndrome, regardless of the diagnosis of PCOS (odds ratio in the whole cohort=2.77 (95% confidence interval (CI) 1.16-6.67), P=0.023). In the nested cohort, women with the GA, TT genotype had higher HSD11B1 mRNA levels in adipose tissue, and higher rates of appearance of cortisol and d3-cortisol (16.1±0.7 nmol/min versus 12.1±1.1, P=0.044) during 9,11,12,12-2H4-cortisol (d4-cortisol) steady-state infusion. CONCLUSIONS We conclude that, in a population of Southern European Caucasian women with and without PCOS, alleles of HSD11B1 containing the two SNPs rs846910 A and rs12086634 T confer increased 11β-HSD1 expression and activity, which associates with the metabolic syndrome.


Journal of Neurophysiology | 2011

Genetic variants of the NMDA receptor influence cortical excitability and plasticity in humans

Francesco Mori; Michele Ribolsi; Hajime Kusayanagi; Alberto Siracusano; Vilma Mantovani; Elena Marasco; Giorgio Bernardi; Diego Centonze

N-methyl-d-aspartate (NMDA) receptors play crucial roles in glutamate-mediated synaptic transmission and plasticity and are involved in a variety of brain functions. Specific single nucleotide polymorphisms (SNPs) in the genes encoding NMDA receptor subunits have been associated with some neuropsychiatric disorders involving altered glutamate transmission, but how these polymorphisms impact on synaptic function in humans is unknown. Here, the role of NMDA receptors in the control of cortical excitability and plasticity was explored by comparing the response to single, paired, and repetitive transcranial magnetic stimulations of the motor cortex in 77 healthy subjects carrying specific allelic variants of the NR1 subunit gene (GRIN1 rs4880213 and rs6293) or of the NR2B subunit gene (GRIN2B rs7301328, rs3764028, and rs1805247). Our results showed that individuals homozygous for the T allele in the rs4880213 GRIN1 SNP had reduced intracortical inhibition, as expected for enhanced glutamatergic excitation in these subjects. Furthermore, individuals carrying the G allele in the rs1805247 GRIN2B SNP show greater intracortical facilitation and greater long-term potentiation-like cortical plasticity after intermittent -burst stimulation. Our results provide novel insights into the function of NMDA receptors in the human brain and might contribute to the clarification of the synaptic bases of severe neuropsychiatric disorders associated with defective glutamate transmission.


Neurology | 2011

Risk of acute promyelocytic leukemia in multiple sclerosis Coding variants of DNA repair genes

Syed Khizer Hasan; F. Buttari; Tiziana Ottone; M.T. Voso; Stefan Hohaus; Elena Marasco; Vilma Mantovani; Paolo Garagnani; Miguel A. Sanz; Laura Cicconi; Giorgio Bernardi; D. Centonze; Francesco Lo-Coco

Background: Single nucleotide polymorphisms (SNPs) in double-strand break repair genes may alter DNA repair capacity and, in turn, confer predisposition to leukemia. We analyzed polymorphic variants of DNA repair and detoxification genes in patients with multiple sclerosis (MS) who developed secondary acute promyelocytic leukemia (sAPL), in most cases after treatment with mitoxantrone (MTZ). Methods: Using MassARRAY high-throughput DNA analysis with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, we genotyped patients with sAPL (n = 20) developed after treatment of MS (18 out 20 treated with MTZ) for the presence of 210 SNPs of 22 genes mostly involved in DNA repair and drug detoxification. Patients with MS who did not develop sAPL including 41 treated with MTZ (n = 253 and 41, respectively) and healthy blood donors (n = 310) were also genotyped as controls. Results: We observed risk allele frequency between MS and sAPL for BRCA2 (rs1801406): 6% and 26%, p = 0.007; XRCC5 (rs207906): 2.5% and 15%, p = 0.016; CYP3A4 (rs2740574): 4.5% and 25%, p = 0.0035. The association of homozygous variants of BRCA2 and XRCC5 yielded higher risk of sAPL (MS vs sAPL: 0.4% and 18%, p = 0.001). We also observed a significant association between a SNP in the promoter region (rs2740574) of CYP3A4, an enzyme involved in the metabolism of chemotherapeutic agents and development of sAPL. Conclusions: Increased susceptibility to develop sAPL in patients with MS receiving MTZ may be linked to genetic variants in DNA repair and drug-metabolizing enzymes that result in impaired detoxification of chemotherapy or inefficient repair of drug-induced genetic damage.

Collaboration


Dive into the Vilma Mantovani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diego Albani

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge