Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vinamrita Singh is active.

Publication


Featured researches published by Vinamrita Singh.


Semiconductor Science and Technology | 2014

Characterization of doped PEDOT: PSS and its influence on the performance and degradation of organic solar cells

Vinamrita Singh; Swati Arora; Manoj Arora; Vishal Sharma; R. P. Tandon

The present work is a detailed study of the optical, morphological and electrical properties of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), PEDOT:PSS, films doped with ethylene glycol (EG) and multi-walled carbon nanotubes (MWCNT). The conductivity of PEDOT:PSS films doped with EG and MWCNT is higher than pristine PEDOT:PSS film. The optical transparency of PEDOT:PSS film decreases insignificantly after addition of MWCNT and EG. The films were further studied using atomic force microscopy, ?x-ray diffraction, Raman spectroscopy and Kelvin probe work function measurement, after which films of PEDOT:PSS with EG and MWCNT were optimized for the fabrication of solar cells. The optimized film was used as a hole extracting layer in a typical ITO/PEDOT:PSS/P3HT:PCBM/Al solar cell. The suitable concentration for an optimized film was found to be 4% MWCNT and 1:4 ratio of EG to PEDOT:PSS. The performance of the device with doped PEDOT:PSS was found to improve in terms of short circuit current density (JSC) and efficiency (?). The solar cell with a doped PEDOT:PSS layer showed higher JSC?and ? due to the increase in the interchains among PEDOT chains along with the introduction of MWCNT channels in PEDOT:PSS matrix. The degradation behavior of the cells was studied and it was found that both pristine and doped PEDOT:PSS cells showed similar trends of degradation. The performance degradation with time was also studied under variable environmental conditions, which showed different aging rates for the two devices.


Physica Scripta | 2011

An anomalous behavior in degraded bulk heterojunction organic solar cells

Vinamrita Singh; Swati Arora; Pankaj Kumar; Pramod Kumar Bhatnagar; Manoj Arora; R. P. Tandon

An anomalous behavior—a change in polarity with the passage of time in the bulk heterojunction poly(3-hexylthiophene) (P3HT):6,6-phenylC61 butyric acid methyl ester (PCBM) organic solar cells—is reported here. This work is a continuation of our previous work where the initial degradation of the organic solar cells, freshly prepared up to 4 h, was mainly due to domain formation in the active layer. With the passage of time, the activity at the interfaces starts becoming significant. A decrease of VOC and JSC, leading to a change in polarity, has been reported and explained up to 300 h after fabrication.


Journal of Renewable and Sustainable Energy | 2011

Effects of aging on the mobility and lifetime of carriers in organic bulk heterojunction solar cells

Vinamrita Singh; Swati Arora; P. K. Bhatnagar; Manoj Arora; R. P. Tandon

Mobility and lifetime of the carriers are two very crucial parameters, which can account for the aging of a photovoltaic device, because changes in morphology, electrode/polymer interfaces, etc., will finally result in decrease of mobility and lifetime of carriers. In the present work, we have tried to explain our experimental data with the help of theoretical analysis based on our earlier model in which we have incorporated the activity at electrode interfaces in terms of density of surface states, thickness of interface layer, and tunneling probability. Calculations show that decrease in mobility for a cell under illumination is much faster than in a dark cell. Photoinduced oxidation plays a dominant role in fast degradation of the mobility. The lifetime is also seen to decrease because of modification of parameters such as interface thickness, density of interface states, and roughness.


Advanced Materials Proceedings | 2016

Degradation Analysis Of Organic Solar Cells Under Variable Conditions - See more at: http://www.vbripress.com/amp/articles/details/24/#sthash.jPCBhYhN.dpuf

Vinamrita Singh; Vishal Sharma; Swati Arora; Manoj Arora; Rupinder Tandon

In the present work, the degradation mechanism of ITO/PEDOT:PSS/P3HT:PCBM/Al solar cells has been studied under variable environmental conditions, i.e., in air and under vacuum. It was observed that the absorption for P3HT:PCBM film kept under normal atmospheric conditions decreased slightly after 350 hours of fabrication. When these films were kept under vacuum, no change in the absorption intensity was observed. However, when the P3HT:PCBM films with PEDOT:PSS layer were studied, an increase in absorption spectra was observed both under air and vacuum. This strongly suggests that the presence of hygroscopic PEDOT:PSS adversely affects the optical properties of thin films and hence the solar cells. The AFM images of the films after degradation showed presence of microscopic holes and mico-sized particles. The decrease in mobilities with time was also less when the devices were kept in vacuum. This suggests that the decrease in mobility is dependent on the decreasing crystallinity of P3HT:PCBM films as observed by XRD data and due to diffusion of impurities. The fall in efficiency of fabricated devices is higher for device exposed to the environment as compared to the fall for device kept under vacuum. These analyses give insight into the possible degradation pathways and help in eradicating the factors responsible for short shelf-life of organic solar cells, thus enabling better device performance in future. Copyright


photovoltaic specialists conference | 2014

Improving P3HT:PCBM based polymer solar cell: Role of doped PEDOT:PSS hole extracting layer towards degradation

Swati Arora; Vinamrita Singh; Manoj Arora; R. P. Tandon

Films of PEDOT:PSS and doped PEDOT:PSS, used as hole extracting layer in organic solar cells, have been studied using scanning electron microscopy, Kelvin probe work function measurement, Col-Cole plots, and conductivity measurements and current voltage (I-V) characteristics with time. A change in morphology is observed in PEDOT:PSS films doped with ethylene glycol and multi-walled carbon nanotubes. The doped films have rougher morphology as compared to the pristine films. The work function increases for doped sample thus improving the charge transfer. Further, the analyses of Cole-Cole plots show that the resistance of doped film is lower than pristine film. The change in conductivity with time has been measured, and the I-V characteristics of fresh and degraded samples indicates that fall in conductivity of HEL is one of the reasons for the decrease in device performance.


Materials Chemistry and Physics | 2015

Investigation on the effect of ferrite content on the multiferroic properties of (1-x) Ba0.95Sr0.05TiO3 - (x) Ni0.7Zn0.2Co0.1Fe2O4 ceramic composite

Richa Sharma; Vinamrita Singh; R.K. Kotnala; R. P. Tandon


Journal of Polymer Research | 2012

Degradation in bulk heterojunction organic solar cells: changes in electrode interface and reduction in the occupation probability of the interface states

Vinamrita Singh; Swati Arora; P. K. Bhatnagar; Manoj Arora; R. P. Tandon


Physics Letters A | 2014

Optimizing P3HT/PCBM/MWCNT films for increased stability in polymer bulk heterojunction solar cells

Vinamrita Singh; Swati Arora; Manoj Arora; Vishal Sharma; R. P. Tandon


Journal of Materials Science: Materials in Electronics | 2015

Influence of donor–acceptor materials on the photovoltaic parameters of conjugated polymer/fullerene solar cells

Vishal Sharma; Vinamrita Singh; Manoj Arora; Swati Arora; R. P. Tandon


International Journal of Applied Ceramic Technology | 2015

Novel Method of Synthesis of Multiferroic Nickel Cobalt Ferrite–Barium Strontium Titanate Composite System

Poonam Pahuja; Richa Sharma; Vinamrita Singh; R. P. Tandon

Collaboration


Dive into the Vinamrita Singh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richa Sharma

Jayoti Vidyapeeth Women's University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. K. Singh

Banaras Hindu University

View shared research outputs
Top Co-Authors

Avatar

Anil K. Gupta

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Mamta Pandey

Guru Angad Dev Veterinary and Animal Sciences University

View shared research outputs
Researchain Logo
Decentralizing Knowledge