Vinay Kumar Rao
National University of Singapore
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vinay Kumar Rao.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Belinda Mei Tze Ling; Narendra Bharathy; Teng-Kai Chung; Wai Kay Kok; SiDe Li; Yong Hua Tan; Vinay Kumar Rao; Suma Gopinadhan; Vittorio Sartorelli; Martin J. Walsh; Reshma Taneja
Skeletal muscle cells have served as a paradigm for understanding mechanisms leading to cellular differentiation. The proliferation and differentiation of muscle precursor cells require the concerted activity of myogenic regulatory factors including MyoD. In addition, chromatin modifiers mediate dynamic modifications of histone tails that are vital to reprogramming cells toward terminal differentiation. Here, we provide evidence for a unique dimension to epigenetic regulation of skeletal myogenesis. We demonstrate that the lysine methyltransferase G9a is dynamically expressed in myoblasts and impedes differentiation in a methyltransferase activity-dependent manner. In addition to mediating histone H3 lysine-9 di-methylation (H3K9me2) on MyoD target promoters, endogenous G9a interacts with MyoD in precursor cells and directly methylates it at lysine 104 (K104) to constrain its transcriptional activity. Mutation of K104 renders MyoD refractory to inhibition by G9a and enhances its myogenic activity. Interestingly, MyoD methylation is critical for G9a-mediated inhibition of myogenesis. These findings provide evidence of an unanticipated role for methyltransferases in cellular differentiation states by direct posttranslational modification of a transcription factor.
Epigenetics | 2013
Shilpa Rani Shankar; Avinash G. Bahirvani; Vinay Kumar Rao; Narendra Bharathy; Jin Rong Ow; Reshma Taneja
Lysine methylation of histone and non-histone substrates by the methyltransferase G9a is mostly associated with transcriptional repression. Recent studies, however, have highlighted its role as an activator of gene expression through mechanisms that are independent of its methyltransferase activity. Here we review the growing repertoire of molecular mechanisms and substrates through which G9a regulates gene expression. We also discuss emerging evidence for its wide-ranging functions in development, pluripotency, cellular differentiation and cell cycle regulation that underscore the complexity of its functions. The deregulated expression of G9a in cancers and other human pathologies suggests that it may be a viable therapeutic target in various diseases.
ACS Chemical Biology | 2013
Rahul Modak; Jeelan Basha; Narendra Bharathy; Koustav Maity; Pushpak Mizar; Akshay V. Bhat; Madavan Vasudevan; Vinay Kumar Rao; Wai Kay Kok; Nagashayana Natesh; Reshma Taneja; Tapas K. Kundu
PCAF (KAT2B) belongs to the GNAT family of lysine acetyltransferases (KAT) and specifically acetylates the histone H3K9 residue and several nonhistone proteins. PCAF is also a transcriptional coactivator. Due to the lack of a PCAF KAT-specific small molecule inhibitor, the exclusive role of the acetyltransferase activity of PCAF is not well understood. Here, we report that a natural compound of the hydroxybenzoquinone class, embelin, specifically inhibits H3Lys9 acetylation in mice and inhibits recombinant PCAF-mediated acetylation with near complete specificity in vitro. Furthermore, using embelin, we have identified the gene networks that are regulated by PCAF during muscle differentiation, further highlighting the broader regulatory functions of PCAF in muscle differentiation in addition to the regulation via MyoD acetylation.
PLOS ONE | 2012
Yaju Wang; Vinay Kumar Rao; Wai Kay Kok; Dijendra Nath Roy; Sumita Sethi; Belinda Mei Tze Ling; Martin B. Lee; Reshma Taneja
Stra13, a basic helix-loop-helix (bHLH) transcription factor is involved in myriad biological functions including cellular growth arrest, differentiation and senescence. However, the mechanisms by which its transcriptional activity and function are regulated remain unclear. In this study, we provide evidence that post-translational modification of Stra13 by Small Ubiquitin-like Modifier (SUMO) dramatically potentiates its ability to transcriptionally repress cyclin D1 and mediate G1 cell cycle arrest in fibroblast cells. Mutation of SUMO acceptor lysines 159 and 279 located in the C-terminal repression domain has no impact on nuclear localization; however, it abrogates association with the co-repressor histone deacetylase 1 (HDAC1), attenuates repression of cyclin D1, and prevents Stra13-mediated growth suppression. HDAC1, which promotes cellular proliferation and cell cycle progression, antagonizes Stra13 sumoylation-dependent growth arrest. Our results uncover an unidentified regulatory axis between Stra13 and HDAC1 in progression through the G1/S phase of the cell cycle, and provide new mechanistic insights into regulation of Stra13-mediated transcriptional repression by sumoylation.
Nucleic Acids Research | 2016
Vinay Kumar Rao; Jin Rong Ow; Shilpa Rani Shankar; Narendra Bharathy; Jayapal Manikandan; Yaju Wang; Reshma Taneja
Differentiation of skeletal muscle cells, like most other cell types, requires a permanent exit from the cell cycle. The epigenetic programming underlying these distinct cellular states is not fully understood. In this study, we provide evidence that the lysine methyltransferase G9a functions as a central axis to regulate proliferation and differentiation of skeletal muscle cells. Transcriptome analysis of G9a knockdown cells revealed deregulation of many cell cycle regulatory genes. We demonstrate that G9a enhances cellular proliferation by two distinct mechanisms. G9a blocks cell cycle exit via methylation-dependent transcriptional repression of the MyoD target genes p21Cip/Waf1 and Rb1. In addition, it activates E2F1-target genes in a methyltransferase activity-independent manner. We show that G9a is present in the E2F1/PCAF complex, and enhances PCAF occupancy and histone acetylation marks at E2F1-target promoters. Interestingly, G9a preferentially associates with E2F1 at the G1/S phase and with MyoD at the G2/M phase. Our results provide evidence that G9a functions both as a co-activator and a co-repressor to enhance cellular proliferation and inhibit myogenic differentiation.
Epigenetics | 2017
Vinay Kumar Rao; Ananya Pal; Reshma Taneja
ABSTRACT Progression of cells through distinct phases of the cell cycle, and transition into out-of-cycling states, such as terminal differentiation and senescence, is accompanied by specific patterns of gene expression. These cell fate decisions are mediated not only by distinct transcription factors, but also chromatin modifiers that establish heritable epigenetic patterns. Lysine methyltransferases (KMTs) that mediate methylation marks on histone and non-histone proteins are now recognized as important regulators of gene expression in cycling and non-cycling cells. Among these, the SUV39 sub-family of KMTs, which includes SUV39H1, SUV39H2, G9a, GLP, SETDB1, and SETDB2, play a prominent role. In this review, we discuss their biochemical properties, sub-cellular localization and function in cell cycle, differentiation programs, and cellular senescence. We also discuss their aberrant expression in cancers, which exhibit de-regulation of cell cycle and differentiation.
Scientific Reports | 2016
Jin Rong Ow; Monica Palanichamy Kala; Vinay Kumar Rao; Min Hee Choi; Narendra Bharathy; Reshma Taneja
In this study, we demonstrate that the lysine methyltransferase G9a inhibits sarcomere organization through regulation of the MEF2C-HDAC5 regulatory axis. Sarcomeres are essential for muscle contractile function. Presently, skeletal muscle disease and dysfunction at the sarcomere level has been associated with mutations of sarcomere proteins. This study provides evidence that G9a represses expression of several sarcomere genes and its over-expression disrupts sarcomere integrity of skeletal muscle cells. G9a inhibits MEF2C transcriptional activity that is essential for expression of sarcomere genes. Through protein interaction assays, we demonstrate that G9a interacts with MEF2C and its co-repressor HDAC5. In the presence of G9a, calcium signaling-dependent phosphorylation and export of HDAC5 to the cytoplasm is blocked which likely results in enhanced MEF2C-HDAC5 association. Activation of calcium signaling or expression of constitutively active CaMK rescues G9a-mediated repression of HDAC5 shuttling as well as sarcomere gene expression. Our results demonstrate a novel epigenetic control of sarcomere assembly and identifies new therapeutic avenues to treat skeletal and cardiac myopathies arising from compromised muscle function.
The Journal of Pathology | 2016
Narendra Bharathy; Sudha Suriyamurthy; Vinay Kumar Rao; Jin Rong Ow; Huey Jin Lim; Payal Chakraborty; Madavan Vasudevan; Chetan Anil Dhamne; Kenneth Tou En Chang; Victor Lee Kwan Min; Tapas K. Kundu; Reshma Taneja
Alveolar rhabdomyosarcoma (ARMS) is an aggressive paediatric cancer of skeletal muscle with poor prognosis. A PAX3–FOXO1 fusion protein acts as a driver of malignancy in ARMS by disrupting tightly coupled but mutually exclusive pathways of proliferation and differentiation. While PAX3–FOXO1 is an attractive therapeutic target, no current treatments are designed to block its oncogenic activity. The present work shows that the histone acetyltransferase P/CAF (KAT2B) is overexpressed in primary tumours from ARMS patients. Interestingly, in fusion‐positive ARMS cell lines, P/CAF acetylates and stabilizes PAX3–FOXO1 rather than MyoD, a master regulator of muscle differentiation. Silencing P/CAF, or pharmacological inhibition of its acetyltransferase activity, down‐regulates PAX3–FOXO1 levels concomitant with reduced proliferation and tumour burden in xenograft mouse models. Our studies identify a P/CAF–PAX3–FOXO1 signalling node that promotes oncogenesis and may contribute to MyoD dysfunction in ARMS. This work exemplifies the therapeutic potential of targeting chromatin‐modifying enzymes to inhibit fusion oncoproteins that are a frequent event in sarcomas. Copyright
Journal of Molecular Cell Biology | 2018
Min Hee Choi; Monica Palanichamy Kala; Jin Rong Ow; Vinay Kumar Rao; Sudha Suriyamurthy; Reshma Taneja
Myogenic differentiation is accompanied by alterations in the chromatin states, which permit or restrict the transcriptional machinery and thus impact distinctive gene expression profiles. The mechanisms by which higher-order chromatin remodeling is associated with gene activation and silencing during differentiation is not fully understood. In this study, we provide evidence that the euchromatic lysine methyltransferase GLP regulates heterochromatin organization and myogenic differentiation. Interestingly, GLP represses expression of the methyl-binding protein MeCP2 that induces heterochromatin clustering during differentiation. Consequently, MeCP2 and HP1γ localization at major satellites are altered upon modulation of GLP expression. In GLP knockdown cells, depletion of MeCP2 restored both chromatin organization and myogenic differentiation. These results identify a novel regulatory axis between a histone methylation writer and DNA methylation reader, which is important for heterochromatin organization during differentiation.
Archive | 2019
Vinay Kumar Rao; Shilpa Rani Shankar; Reshma Taneja
Chromatin immunoprecipitation (ChIP) is a powerful and sensitive technique that is widely used to study DNA-protein interactions. It enables an unbiased genome-wide analysis of transcriptional changes during several biological processes including cellular differentiation. Here, we describe a step-by-step protocol to identify histone modifications, transcription factor, and co-factor binding to chromatin in skeletal myoblasts. We discuss critical steps during cell harvesting, sonication, and immunoprecipitation and provide notes to evade common pitfalls.
Collaboration
Dive into the Vinay Kumar Rao's collaboration.
Jawaharlal Nehru Centre for Advanced Scientific Research
View shared research outputs