Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vinayak P. Dravid is active.

Publication


Featured researches published by Vinayak P. Dravid.


Nature | 2012

High-performance bulk thermoelectrics with all-scale hierarchical architectures

Kanishka Biswas; Jiaqing He; Ivan D. Blum; Chun I. Wu; Timothy P. Hogan; David N. Seidman; Vinayak P. Dravid; Mercouri G. Kanatzidis

With about two-thirds of all used energy being lost as waste heat, there is a compelling need for high-performance thermoelectric materials that can directly and reversibly convert heat to electrical energy. However, the practical realization of thermoelectric materials is limited by their hitherto low figure of merit, ZT, which governs the Carnot efficiency according to the second law of thermodynamics. The recent successful strategy of nanostructuring to reduce thermal conductivity has achieved record-high ZT values in the range 1.5–1.8 at 750–900 kelvin, but still falls short of the generally desired threshold value of 2. Nanostructures in bulk thermoelectrics allow effective phonon scattering of a significant portion of the phonon spectrum, but phonons with long mean free paths remain largely unaffected. Here we show that heat-carrying phonons with long mean free paths can be scattered by controlling and fine-tuning the mesoscale architecture of nanostructured thermoelectric materials. Thus, by considering sources of scattering on all relevant length scales in a hierarchical fashion—from atomic-scale lattice disorder and nanoscale endotaxial precipitates to mesoscale grain boundaries—we achieve the maximum reduction in lattice thermal conductivity and a large enhancement in the thermoelectric performance of PbTe. By taking such a panoscopic approach to the scattering of heat-carrying phonons across integrated length scales, we go beyond nanostructuring and demonstrate a ZT value of ∼2.2 at 915 kelvin in p-type PbTe endotaxially nanostructured with SrTe at a concentration of 4 mole per cent and mesostructured with powder processing and spark plasma sintering. This increase in ZT beyond the threshold of 2 highlights the role of, and need for, multiscale hierarchical architecture in controlling phonon scattering in bulk thermoelectrics, and offers a realistic prospect of the recovery of a significant portion of waste heat.


Nature | 2014

Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals

Li-Dong Zhao; Shih Han Lo; Yongsheng Zhang; Hui Sun; Gangjian Tan; Ctirad Uher; C. Wolverton; Vinayak P. Dravid; Mercouri G. Kanatzidis

The thermoelectric effect enables direct and reversible conversion between thermal and electrical energy, and provides a viable route for power generation from waste heat. The efficiency of thermoelectric materials is dictated by the dimensionless figure of merit, ZT (where Z is the figure of merit and T is absolute temperature), which governs the Carnot efficiency for heat conversion. Enhancements above the generally high threshold value of 2.5 have important implications for commercial deployment, especially for compounds free of Pb and Te. Here we report an unprecedented ZT of 2.6 ± 0.3 at 923 K, realized in SnSe single crystals measured along the b axis of the room-temperature orthorhombic unit cell. This material also shows a high ZT of 2.3 ± 0.3 along the c axis but a significantly reduced ZT of 0.8 ± 0.2 along the a axis. We attribute the remarkably high ZT along the b axis to the intrinsically ultralow lattice thermal conductivity in SnSe. The layered structure of SnSe derives from a distorted rock-salt structure, and features anomalously high Grüneisen parameters, which reflect the anharmonic and anisotropic bonding. We attribute the exceptionally low lattice thermal conductivity (0.23 ± 0.03 W m−1 K−1 at 973 K) in SnSe to the anharmonicity. These findings highlight alternative strategies to nanostructuring for achieving high thermoelectric performance.


ACS Nano | 2013

Sensing behavior of atomically thin-layered MoS2 transistors.

Dattatray J. Late; Yi Kai Huang; Bin Liu; Jagaran Acharya; Sharmila N. Shirodkar; Jiajun Luo; Aiming Yan; Daniel Charles; Umesh V. Waghmare; Vinayak P. Dravid; C. N. R. Rao

Most of recent research on layered chalcogenides is understandably focused on single atomic layers. However, it is unclear if single-layer units are the most ideal structures for enhanced gas-solid interactions. To probe this issue further, we have prepared large-area MoS2 sheets ranging from single to multiple layers on 300 nm SiO2/Si substrates using the micromechanical exfoliation method. The thickness and layering of the sheets were identified by optical microscope, invoking recently reported specific optical color contrast, and further confirmed by AFM and Raman spectroscopy. The MoS2 transistors with different thicknesses were assessed for gas-sensing performances with exposure to NO2, NH3, and humidity in different conditions such as gate bias and light irradiation. The results show that, compared to the single-layer counterpart, transistors of few MoS2 layers exhibit excellent sensitivity, recovery, and ability to be manipulated by gate bias and green light. Further, our ab initio DFT calculations on single-layer and bilayer MoS2 show that the charge transfer is the reason for the decrease in resistance in the presence of applied field.


ACS Nano | 2012

Hysteresis in Single-Layer MoS2 Field Effect Transistors

Dattatray J. Late; Bin Liu; H. S. S. Ramakrishna Matte; Vinayak P. Dravid; C. N. R. Rao

Field effect transistors using ultrathin molybdenum disulfide (MoS(2)) have recently been experimentally demonstrated, which show promising potential for advanced electronics. However, large variations like hysteresis, presumably due to extrinsic/environmental effects, are often observed in MoS(2) devices measured under ambient environment. Here, we report the origin of their hysteretic and transient behaviors and suggest that hysteresis of MoS(2) field effect transistors is largely due to absorption of moisture on the surface and intensified by high photosensitivity of MoS(2). Uniform encapsulation of MoS(2) transistor structures with silicon nitride grown by plasma-enhanced chemical vapor deposition is effective in minimizing the hysteresis, while the device mobility is improved by over 1 order of magnitude.


Nature Chemistry | 2011

Strained endotaxial nanostructures with high thermoelectric figure of merit

Kanishka Biswas; Jiaqing He; Qichun Zhang; Guoyu Wang; Ctirad Uher; Vinayak P. Dravid; Mercouri G. Kanatzidis

Thermoelectric materials can directly generate electrical power from waste heat but the challenge is in designing efficient, stable and inexpensive systems. Nanostructuring in bulk materials dramatically reduces the thermal conductivity but simultaneously increases the charge carrier scattering, which has a detrimental effect on the carrier mobility. We have experimentally achieved concurrent phonon blocking and charge transmitting via the endotaxial placement of nanocrystals in a thermoelectric material host. Endotaxially arranged SrTe nanocrystals at concentrations as low as 2% were incorporated in a PbTe matrix doped with Na(2)Te. This effectively inhibits the heat flow in the system but does not affect the hole mobility, allowing a large power factor to be achieved. The crystallographic alignment of SrTe and PbTe lattices decouples phonon and electron transport and this allows the system to reach a thermoelectric figure of merit of 1.7 at ~800 K.


Science | 2016

Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe

Li-Dong Zhao; Gangjian Tan; Shiqiang Hao; Jiaqing He; Yanling Pei; Hang Chi; Heng Wang; Shengkai Gong; Huibin Xu; Vinayak P. Dravid; Ctirad Uher; G. Jeffrey Snyder; C. Wolverton; Mercouri G. Kanatzidis

Heat conversion gets a power boost Thermoelectric materials convert waste heat into electricity, but often achieve high conversion efficiencies only at high temperatures. Zhao et al. tackle this problem by introducing small amounts of sodium to the thermoelectric SnSe (see the Perspective by Behnia). This boosts the power factor, allowing the material to generate more energy while maintaining good conversion efficiency. The effect holds across a wide temperature range, which is attractive for developing new applications. Science, this issue p. 141; see also p. 124 A thermoelectric derived by sodium doping of tin selenide has a high power factor and conversion efficiency over a wide temperature range. [Also see Perspective by Behnia] Thermoelectric technology, harvesting electric power directly from heat, is a promising environmentally friendly means of energy savings and power generation. The thermoelectric efficiency is determined by the device dimensionless figure of merit ZTdev, and optimizing this efficiency requires maximizing ZT values over a broad temperature range. Here, we report a record high ZTdev ∼1.34, with ZT ranging from 0.7 to 2.0 at 300 to 773 kelvin, realized in hole-doped tin selenide (SnSe) crystals. The exceptional performance arises from the ultrahigh power factor, which comes from a high electrical conductivity and a strongly enhanced Seebeck coefficient enabled by the contribution of multiple electronic valence bands present in SnSe. SnSe is a robust thermoelectric candidate for energy conversion applications in the low and moderate temperature range.


Energy and Environmental Science | 2014

The panoscopic approach to high performance thermoelectrics

Li-Dong Zhao; Vinayak P. Dravid; Mercouri G. Kanatzidis

This review discusses recent developments and current research in high performance bulk thermoelectric materials, comprising nanostructuring, mesostructuring, band alignment, band engineering and synergistically defining key strategies for boosting the thermoelectric performance. To date, the dramatic enhancements in the figure of merit achieved in bulk thermoelectric materials have come either from the reduction in lattice thermal conductivity or improvement in power factors, or both of them. Here, we summarize these relationships between very large reduction of the lattice thermal conductivity with all-scale hierarchical architecturing, large enhanced Seebeck coefficients with intra-matrix electronic structure engineering, and control of the carrier mobility with matrix/inclusion band alignment, which enhance the power factor and reduce the lattice thermal conductivity. The new concept of hierarchical compositionally alloyed nanostructures to achieve these effects is presented. Systems based on PbTe, PbSe and PbS in which spectacular advances have been demonstrated are given particular emphasis. A discussion of future possible strategies is aimed at enhancing the thermoelectric figure of merit of these materials.


Angewandte Chemie | 2013

Chemically exfoliated MoS2 as near-infrared photothermal agents.

Stanley S. Chou; Bryan Kaehr; Jaemyung Kim; Brian M. Foley; Mrinmoy De; Patrick E. Hopkins; Jiaxing Huang; C. Jeffrey Brinker; Vinayak P. Dravid

The near-infrared (NIR) window refers to a range of wavelengths (700–1300 nm) in which biological tissues are highly transparent.[1] Consequently, biological imaging and therapy modalities employ light at these wavelengths for the monitoring[1] and triggering[2] of biological events in vitro and in vivo. For instance, photothermal ablation takes advantage of NIR absorbing materials for transducing light into heat.[2] The resultant thermal energy can be used for a number of applications, such as tissue ablation and drug release. Despite the intense interest in NIR photothermal agents, their development has suffered from considerable challenges. In particular, few nanomaterials display the requisite absorption profiles required for NIR photothermal transduction.


Advanced Materials | 2012

GaS and GaSe Ultrathin Layer Transistors

Dattatray J. Late; Bin Liu; Jiajun Luo; Aiming Yan; H. S. S. Ramakrishna Matte; M. Grayson; C. N. R. Rao; Vinayak P. Dravid

Room-temperature, bottom-gate, field-effect transistor characteristics of 2D ultrathin layer GaS and GaSe prepared from the bulk crystals using a micromechanical cleavage technique are reported. The transistors based on active GaS and GaSe ultrathin layers demonstrate typical n-and p-type conductance transistor operation along with a good ON/OFF ratio and electron differential mobility.


Journal of the American Chemical Society | 2013

Ligand Conjugation of Chemically Exfoliated MoS2

Stanley S. Chou; Mrinmoy De; Jaemyung Kim; Segi Byun; Conner Dykstra; Jin Yu; Jiaxing Huang; Vinayak P. Dravid

MoS2 is a two-dimensional material that is gaining prominence due to its unique electronic and chemical properties. Here, we demonstrate ligand conjugation of chemically exfoliated MoS2 using thiol chemistry. With this method, we modulate the ζ-potential and colloidal stability of MoS2 sheets through ligand designs, thus enabling its usage as a selective artificial protein receptor for β-galactosidase. The facile thiol functionalization route opens the door for surface modifications of solution processable MoS2 sheets.

Collaboration


Dive into the Vinayak P. Dravid's collaboration.

Researchain Logo
Decentralizing Knowledge