Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vince I. Madai is active.

Publication


Featured researches published by Vince I. Madai.


Brain Research | 2013

A glutamatergic projection from the lateral hypothalamus targets VTA-projecting neurons in the lateral habenula of the rat.

W. Poller; Vince I. Madai; René Bernard; Gregor Laube; Rüdiger W. Veh

Homeostasis describes the fundamental biological ability of individuals to maintain stable internal conditions in a changing environment. Homeostatic reactions include internal adjustments as well as behavioral responses. In vertebrates, behavioral responses are induced by the reward system. This system originates in the ventral tegmental area (VTA) and leads to increased dopamine levels in the forebrain whenever activated. A major inhibitor of VTA activity is the lateral habenula (LHb). This epithalamic structure is able to almost completely suppress dopamine release, either directly or via the rostromedial tegmental nucleus (RMTg), when rewarding expectations are not met. A major input to the LHb arises from the lateral hypothalamic area (LHA), an important regulator of the homeostatic system. Currently, little is known about the effects of the strong hypothalamic projection on the activity of LHb neurons. In the present study, we analyze neurotransmitters and cellular targets of the LHA-LHb projection in the rat. Therefore, anterograde tracing from the LHA was combined with the visualization of neurotransmitters in the LHb. These experiments revealed a mainly glutamatergic projection, probably exerting excitatory effects on the targeted LHb cells. These cellular targets were analyzed in a second step. Anterograde tracing from the LHA in combination with retrograde tracing from the VTA/RMTg region revealed that LHb neurons projecting to the VTA/RMTg region are densely targeted by the LHA projection. Visualization of synaptophysin at these contact sites indicates that the contact sites indeed are synapses. Taken together, the present study describes a strong mainly glutamatergic projection from the LHA that targets VTA/RMTg-projecting neurons in the LHb. These findings emphasize the potential role of the LHb as direct link between homeostatic areas and reward circuitries, which may be important for the control of homeostatic behaviors.


PLOS ONE | 2012

Ultrahigh-field MRI in human ischemic stroke--a 7 tesla study.

Vince I. Madai; Federico C. von Samson-Himmelstjerna; Miriam Bauer; Katharina L. Stengl; Matthias A. Mutke; Elena Tovar-Martinez; Jens Wuerfel; Matthias Endres; Thoralf Niendorf; Jan Sobesky

Introduction Magnetic resonance imaging (MRI) using field strengths up to 3 Tesla (T) has proven to be a powerful tool for stroke diagnosis. Recently, ultrahigh-field (UHF) MRI at 7 T has shown relevant diagnostic benefits in imaging of neurological diseases, but its value for stroke imaging has not been investigated yet. We present the first evaluation of a clinically feasible stroke imaging protocol at 7 T. For comparison an established stroke imaging protocol was applied at 3 T. Methods In a prospective imaging study seven patients with subacute and chronic stroke were included. Imaging at 3 T was immediately followed by 7 T imaging. Both protocols included T1-weighted 3D Magnetization-Prepared Rapid-Acquired Gradient-Echo (3D-MPRAGE), T2-weighted 2D Fluid Attenuated Inversion Recovery (2D-FLAIR), T2-weighted 2D Fluid Attenuated Inversion Recovery (2D-T2-TSE), T2* weighted 2D Fast Low Angle Shot Gradient Echo (2D-HemoFLASH) and 3D Time-of-Flight angiography (3D-TOF). Results The diagnostic information relevant for clinical stroke imaging obtained at 3 T was equally available at 7 T. Higher spatial resolution at 7 T revealed more anatomical details precisely depicting ischemic lesions and periinfarct alterations. A clear benefit in anatomical resolution was also demonstrated for vessel imaging at 7 T. RF power deposition constraints induced scan time prolongation and reduced brain coverage for 2D-FLAIR, 2D-T2-TSE and 3D-TOF at 7 T versus 3 T. Conclusions The potential of 7 T MRI for human stroke imaging is shown. Our pilot study encourages a further evaluation of the diagnostic benefit of stroke imaging at 7 T in a larger study.


Journal of Cerebral Blood Flow and Metabolism | 2011

Crossed cerebellar diaschisis after stroke: can perfusion-weighted MRI show functional inactivation?

Vince I. Madai; Andreas Altaner; Katharina L. Stengl; Olivier Zaro-Weber; Wolf-Dieter Heiss; Federico C. von Samson-Himmelstjerna; Jan Sobesky

In this study, we aimed to assess the detection of crossed cerebellar diaschisis (CCD) following stroke by perfusion-weighted magnetic resonance imaging (PW-MRI) in comparison with positron emission tomography (PET). Both PW-MRI and 15O-water-PET were performed in acute and subacute hemispheric stroke patients. The degree of CCD was defined by regions of interest placed in the cerebellar hemispheres ipsilateral (I) and contralateral (C) to the supratentorial lesion. An asymmetry index (AI = C/I) was calculated for PET-cerebral blood flow (CBF) and MRI-based maps of CBF, cerebral blood volume (CBV), mean transit time (MTT), and time to peak (TTP). The resulting AI values were compared by Bland-Altman (BA) plots and receiver operating characteristic analysis to detect the degree and presence of CCD. A total of 26 imaging procedures were performed (median age 57 years, 20/26 imaged within 48 hours after stroke). In BA plots, all four PW-MRI maps could not reliably reflect the degree of CCD. In receiver operating characteristic analysis for detection of CCD, PW-CBF performed poorly (accuracy 0.61), whereas CBV, MTT, and TTP failed (accuracy < 0.60). On the basis of our findings, PW-MRI at 1.5 T is not suited to depict CCD after stroke.


Journal of Cerebral Blood Flow and Metabolism | 2015

3D GRASE Pulsed Arterial Spin Labeling at Multiple Inflow Times in Patients with Long Arterial Transit Times: Comparison with Dynamic Susceptibility-Weighted Contrast-Enhanced MRI at 3 Tesla

Steve Z. Martin; Vince I. Madai; Federico C. von Samson-Himmelstjerna; Matthias A. Mutke; Miriam Bauer; Cornelius X. Herzig; Stefan Hetzer; Matthias Günther; Jan Sobesky

Pulsed arterial spin labeling (PASL) at multiple inflow times (multi-TIs) is advantageous for the measurement of brain perfusion in patients with long arterial transit times (ATTs) as in steno-occlusive disease, because bolus-arrival-time can be measured and blood flow measurements can be corrected accordingly. Owing to its increased signal-to-noise ratio, a combination with a three-dimensional gradient and spin echo (GRASE) readout allows acquiring a sufficient number of multi-TIs within a clinically feasible acquisition time of 5 minutes. We compared this technique with the clinical standard dynamic susceptibility-weighted contrast-enhanced imaging—magnetic resonance imaging in patients with unilateral stenosis >70% of the internal carotid or middle cerebral artery (MCA) at 3 Tesla. We performed qualitative (assessment by three expert raters) and quantitative (region of interest (ROI)/volume of interest (VOI) based) comparisons. In 43 patients, multi-TI PASL-GRASE showed perfusion alterations with moderate accuracy in the qualitative analysis. Quantitatively, moderate correlation coefficients were found for the MCA territory (ROI based: r=0.52, VOI based: r=0.48). In the anterior cerebral artery (ACA) territory, a readout related right-sided susceptibility artifact impaired correlation (ROI based: r=0.29, VOI based: r=0.34). Arterial transit delay artifacts were found only in 12% of patients. In conclusion, multi-TI PASL-GRASE can correct for arterial transit delay in patients with long ATTs. These results are promising for the transfer of ASL to the clinical practice.


Neuroscience | 2011

Lateral habenular neurons projecting to reward-processing monoaminergic nuclei express hyperpolarization-activated cyclic nucleotid-gated cation channels.

W. Poller; René Bernard; Christian Derst; T. Weiss; Vince I. Madai; R.W. Veh

The lateral habenular complex (LHb) is a key signal integrator between limbic forebrain regions and monoaminergic hindbrain nuclei. Major projections of LHb neurons target the dopaminergic ventral tegmental area (VTA) and the serotonergic dorsal (DR) and median raphe nuclei (MnR). Both monoaminergic neurotransmitter systems play a central role in reward processing and reward-related decision-making. Glutamatergic LHb efferents terminate on GABAergic neurons in the VTA, the rostromedial tegmental nucleus (RMTg), and the raphe nuclei, thereby suppressing monoamine release when required by the present behavioral context. Recent studies suggest that the LHb exerts a strong tonic inhibition on monoamine release when no reward is to be obtained. It is yet unknown whether this inhibition is the result of a continuous external activation by other brain areas, or if it is intrinsically generated by LHb projection neurons. To analyze whether the tonic inhibition may be the result of a hyperpolarization-activated cyclic nucleotid-gated cation channel (HCN)-mediated pacemaker activity of LHb projection neurons, we combined retrograde tracing in rats with in situ hybridization of HCN1 to HCN4 mRNAs. In fact, close to all LHb neurons targeting VTA or raphe nuclei are equipped with HCN subunit mRNAs. While HCN1 mRNA is scarce, most neurons display strong expression of HCN2 to HCN4 mRNAs, in line with the potential formation of heteromeric channels. These results are supported by quantitative PCR and immunocytochemical analyses. Thus, our data suggest that the tonic inhibition of monoamine release is intrinsically generated in LHb projection neurons and that their activity may only be modulated by synaptic inputs to the LHb.


PLOS ONE | 2014

DWI intensity values predict FLAIR lesions in acute ischemic stroke.

Vince I. Madai; Ivana Galinovic; Ulrike Grittner; Olivier Zaro-Weber; Alice Schneider; Steve Z. Martin; Frederico C. von Samson-Himmelstjerna; Katharina L. Stengl; Matthias A. Mutke; Walter Moeller-Hartmann; Martin Ebinger; Jochen B. Fiebach; Jan Sobesky

Background and Purpose In acute stroke, the DWI-FLAIR mismatch allows for the allocation of patients to the thrombolysis window (<4.5 hours). FLAIR-lesions, however, may be challenging to assess. In comparison, DWI may be a useful bio-marker owing to high lesion contrast. We investigated the performance of a relative DWI signal intensity (rSI) threshold to predict the presence of FLAIR-lesions in acute stroke and analyzed its association with time-from-stroke-onset. Methods In a retrospective, dual-center MR-imaging study we included patients with acute stroke and time-from-stroke-onset ≤12 hours (group A: n = 49, 1.5T; group B: n = 48, 3T). DW- and FLAIR-images were coregistered. The largest lesion extent in DWI defined the slice for further analysis. FLAIR-lesions were identified by 3 raters, delineated as regions-of-interest (ROIs) and copied on the DW-images. Circular ROIs were placed within the DWI-lesion and labeled according to the FLAIR-pattern (FLAIR+ or FLAIR−). ROI-values were normalized to the unaffected hemisphere. Adjusted and nonadjusted receiver-operating-characteristics (ROC) curve analysis on patient level was performed to analyze the ability of a DWI- and ADC-rSI threshold to predict the presence of FLAIR-lesions. Spearman correlation and adjusted linear regression analysis was performed to assess the relationship between DWI-intensity and time-from-stroke-onset. Results DWI-rSI performed well in predicting lesions in FLAIR-imaging (mean area under the curve (AUC): group A: 0.84; group B: 0.85). An optimal mean DWI-rSI threshold was identified (A: 162%; B: 161%). ADC-maps performed worse (mean AUC: A: 0.58; B: 0.77). Adjusted regression models confirmed the superior performance of DWI-rSI. Correlation coefficents and linear regression showed a good association with time-from-stroke-onset for DWI-rSI, but not for ADC-rSI. Conclusion An easily assessable DWI-rSI threshold identifies the presence of lesions in FLAIR-imaging with good accuracy and is associated with time-from-stroke-onset in acute stroke. This finding underlines the potential of a DWI-rSI threshold as a marker of lesion age.


PLOS ONE | 2014

Rapid parametric mapping of the longitudinal relaxation time T1 using two-dimensional variable flip angle magnetic resonance imaging at 1.5 Tesla, 3 Tesla, and 7 Tesla.

Matthias A. Dieringer; Michael Deimling; Davide Santoro; Jens Wuerfel; Vince I. Madai; Jan Sobesky; Florian von Knobelsdorff-Brenkenhoff; Jeanette Schulz-Menger; Thoralf Niendorf

Introduction Visual but subjective reading of longitudinal relaxation time (T1) weighted magnetic resonance images is commonly used for the detection of brain pathologies. For this non-quantitative measure, diagnostic quality depends on hardware configuration, imaging parameters, radio frequency transmission field (B1+) uniformity, as well as observer experience. Parametric quantification of the tissue T1 relaxation parameter offsets the propensity for these effects, but is typically time consuming. For this reason, this study examines the feasibility of rapid 2D T1 quantification using a variable flip angles (VFA) approach at magnetic field strengths of 1.5 Tesla, 3 Tesla, and 7 Tesla. These efforts include validation in phantom experiments and application for brain T1 mapping. Methods T1 quantification included simulations of the Bloch equations to correct for slice profile imperfections, and a correction for B1+. Fast gradient echo acquisitions were conducted using three adjusted flip angles for the proposed T1 quantification approach that was benchmarked against slice profile uncorrected 2D VFA and an inversion-recovery spin-echo based reference method. Brain T1 mapping was performed in six healthy subjects, one multiple sclerosis patient, and one stroke patient. Results Phantom experiments showed a mean T1 estimation error of (-63±1.5)% for slice profile uncorrected 2D VFA and (0.2±1.4)% for the proposed approach compared to the reference method. Scan time for single slice T1 mapping including B1+ mapping could be reduced to 5 seconds using an in-plane resolution of (2×2) mm2, which equals a scan time reduction of more than 99% compared to the reference method. Conclusion Our results demonstrate that rapid 2D T1 quantification using a variable flip angle approach is feasible at 1.5T/3T/7T. It represents a valuable alternative for rapid T1 mapping due to the gain in speed versus conventional approaches. This progress may serve to enhance the capabilities of parametric MR based lesion detection and brain tissue characterization.


PLOS ONE | 2013

Arginase and Arginine Decarboxylase - Where Do the Putative Gate Keepers of Polyamine Synthesis Reside in Rat Brain?

Daniela Peters; Jana Berger; Kristina Langnaese; Christian Derst; Vince I. Madai; Michael Krauss; Klaus-Dieter Fischer; Rüdiger W. Veh; Gregor Laube

Polyamines are important regulators of basal cellular functions but also subserve highly specific tasks in the mammalian brain. With this respect, polyamines and the synthesizing and degrading enzymes are clearly differentially distributed in neurons versus glial cells and also in different brain areas. The synthesis of the diamine putrescine may be driven via two different pathways. In the “classical” pathway urea and carbon dioxide are removed from arginine by arginase and ornithine decarboxylase. The alternative pathway, first removing carbon dioxide by arginine decarboxlyase and then urea by agmatinase, may serve the same purpose. Furthermore, the intermediate product of the alternative pathway, agmatine, is an endogenous ligand for imidazoline receptors and may serve as a neurotransmitter. In order to evaluate and compare the expression patterns of the two gate keeper enzymes arginase and arginine decarboxylase, we generated polyclonal, monospecific antibodies against arginase-1 and arginine decarboxylase. Using these tools, we immunocytochemically screened the rat brain and compared the expression patterns of both enzymes in several brain areas on the regional, cellular and subcellular level. In contrast to other enzymes of the polyamine pathway, arginine decarboxylase and arginase are both constitutively and widely expressed in rat brain neurons. In cerebral cortex and hippocampus, principal neurons and putative interneurons were clearly labeled for both enzymes. Labeling, however, was strikingly different in these neurons with respect to the subcellular localization of the enzymes. While with antibodies against arginine decarboxylase the immunosignal was distributed throughout the cytoplasm, arginase-like immunoreactivity was preferentially localized to Golgi stacks. Given the apparent congruence of arginase and arginine decarboxylase distribution with respect to certain cell populations, it seems likely that the synthesis of agmatine rather than putrescine may be the main purpose of the alternative pathway of polyamine synthesis, while the classical pathway supplies putrescine and spermidine/spermine in these neurons.


PLOS ONE | 2014

Clinical evaluation of an arterial-spin-labeling product sequence in steno-occlusive disease of the brain

Matthias A. Mutke; Vince I. Madai; Federico C. von Samson-Himmelstjerna; Olivier Zaro Weber; Gajanan S. Revankar; Steve Z. Martin; Katharina L. Stengl; Miriam Bauer; Stefan Hetzer; Matthias Günther; Jan Sobesky

Introduction In brain perfusion imaging, arterial spin labeling (ASL) is a noninvasive alternative to dynamic susceptibility contrast-magnetic resonance imaging (DSC-MRI). For clinical imaging, only product sequences can be used. We therefore analyzed the performance of a product sequence (PICORE-PASL) included in an MRI software-package compared with DSC-MRI in patients with steno-occlusion of the MCA or ICA >70%. Methods Images were acquired on a 3T MRI system and qualitatively analyzed by 3 raters. For a quantitative analysis, cortical ROIs were placed in co-registered ASL and DSC images. Pooled data for ASL-cerebral blood flow (CBF) and DSC-CBF were analyzed by Spearman’s correlation and the Bland-Altman (BA)-plot. Results In 28 patients, 11 ASL studies were uninterpretable due to patient motion. Of the remaining patients, 71% showed signs of delayed tracer arrival. A weak correlation for DSC-relCBF vs ASL-relCBF (r = 0.24) and a large spread of values in the BA-plot owing to unreliable CBF-measurement was found. Conclusion The PICORE ASL product sequence is sensitive for estimation of delayed tracer arrival, but cannot be recommended to measure CBF in steno-occlusive disease. ASL-sequences that are less sensitive to patient motion and correcting for delayed blood flow should be available in the clinical setting.


Amino Acids | 2012

Synaptic localisation of agmatinase in rat cerebral cortex revealed by virtual pre-embedding

Vince I. Madai; W. Poller; D. Peters; J. Berger; K. Paliege; René Bernard; R.W. Veh; Gregor Laube

Light microscopic evidence suggested a synaptic role for agmatinase, an enzyme capable of inactivating the putative neurotransmitter and endogenous anti-depressant agmatine. Using electron microscopy and an alternative pre-embedding approach referred to as virtual pre-embedding, agmatinase was localised pre- and postsynaptically, to dendritic spines, spine and non-spine terminals, and dendritic profiles. In dendritic spines, labelling displayed a tendency towards the postsynaptic density. These results further strengthen a synaptic role for agmatine and strongly suggest a regulatory role for synaptically expressed agmatinase.

Collaboration


Dive into the Vince I. Madai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thoralf Niendorf

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Friedemann Paul

Humboldt University of Berlin

View shared research outputs
Researchain Logo
Decentralizing Knowledge