Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vincent A. Ziboh is active.

Publication


Featured researches published by Vincent A. Ziboh.


Prostaglandins Leukotrienes and Essential Fatty Acids | 1998

Effects of naturally-occurring flavonoids and biflavonoids on epidermal cyclooxygenase and lipoxygenase from guinea-pigs

H.P. Kim; Indu Mani; Lars Iversen; Vincent A. Ziboh

Although there have been numerous topical applications of plant extracts having flavonoids known as anti-inflammatory compounds, only a few studies were reported concerning effects of flavonoids on epidermal cyclooxygenase/lipoxygenase. In this investigation, effects of naturally occurring flavonoids on epidermal cyclooxygenase/lipoxygenase were studied using five selected derivatives: flavanone, apigenin (flavone), quercetin (flavonol), amentoflavone and ginkgetin (biflavone) because eicosanoids generated in the epidermis are believed to be involved in various biological activities of the skin. Microsomal and cytosolic fractions were obtained from guinea-pig epidermal homogenate by centrifugation and used as a source for cyclooxygenase and lipoxygenase. It was found that quercetin inhibited both cyclooxygenase and lipoxygenase, being more potent against lipoxygenase, while flavanone and apigenin did not show any inhibition. Amentoflavone, one of the biflavones tested, showed potent and selective inhibitory activity on cyclooxygenase (IC50 = 3 microM) which was comparable to indomethacin (IC50 = 1 microM). In contrast, structurally similar ginkgetin possessed weak inhibitory activity on cyclooxygenase. The in vivo effects of these flavonoids on the normal and diseased skin remain to be studied.


The American Journal of Clinical Nutrition | 2000

Metabolism of polyunsaturated fatty acids by skin epidermal enzymes: generation of antiinflammatory and antiproliferative metabolites.

Vincent A. Ziboh; Craig C. Miller; Yunhi Cho

In the skin epidermis, the metabolism of polyunsaturated fatty acids (PUFAs) is highly active. Dietary deficiency of linoleic acid (LA), the major 18-carbon n-6 PUFA in normal epidermis, results in a characteristic scaly skin disorder and excessive epidermal water loss. Because of the inability of normal skin epidermis to desaturate LA to gamma-linolenic acid, it is transformed by epidermal 15-lipoxygenase to mainly 13-hydroxyoctadecadienoic acid, which functionally exerts antiproliferative properties in the tissue. In contrast, compared with LA, arachidonic acid (AA) is a relatively minor 20-carbon n-6 PUFA in the skin and is metabolized via the cyclooxygenase pathway, predominantly to the prostaglandins E(2), F(2)(alpha), and D(2). AA is also metabolized via the 15-lipoxygenase pathway, predominantly to 15-hydroxyeicosatetraenoic acid. At low concentrations, the prostaglandins function to modulate normal skin physiologic processes, whereas at high concentrations they induce inflammatory processes. PUFAs derived from other dietary oils are also transformed mainly into monohydroxy fatty acids. For instance, epidermal 15-lipoxygenase transforms dihomo-gamma-linolenic acid (20:3n-6) to 15-hydroxyeicosatrienoic acid, eicosapentaenoic acid (20:5n-3) to 15-hydroxyeicosapentaenoic acid, and docosahexaenoic acid (22:6n-3) to 17-hydroxydocosahexaenoic acid, respectively. These monohydroxy acids exhibit antiinflammatory properties in vitro. Thus, supplementation of diets with appropriate purified vegetable oils, fish oil, or both may generate local cutaneous antiinflammatory and antiproliferative metabolites which could serve as less toxic in vivo monotherapies or as adjuncts to standard therapeutic regimens for the management of inflammatory skin disorders.


Acta Paediatrica | 2007

Impact of topical oils on the skin barrier: possible implications for neonatal health in developing countries

Gary L. Darmstadt; M. Mao-Qiang; Emil Y. Chi; Shampa Saha; Vincent A. Ziboh; Robert E. Black; M. Santosham; Peter M. Elias

Topical therapy to enhance skin barrier function may be a simple, low‐cost, effective strategy to improve outcome of preterm infants with a developmentally compromised epidermal barrier, as lipid constituents of topical products may act as a mechanical barrier and augment synthesis of barrier lipids. Natural oils are applied topically as part of a traditional oil massage to neonates in many developing countries. We sought to identify inexpensive, safe, vegetable oils available in developing countries that improved epidermal barrier function. The impact of oils on mouse epidermal barrier function (rate of transepidermal water loss over time following acute barrier disruption by tape‐stripping) and ultrastructure was determined. A single application of sunflower seed oil significantly accelerated skin barrier recovery within 1 h; the effect was sustained 5 h after application. In contrast, the other vegetable oils tested (mustard, olive and soybean oils) all significantly delayed recovery of barrier function compared with control‐ or Aquaphor‐treated skin. Twice‐daily applications of mustard oil for 7 d resulted in sustained delay of barrier recovery. Moreover, adverse ultrastructural changes were seen under transmission electron microscopy in keratin intermediate filament, mitochondrial, nuclear, and nuclear envelope structure following a single application of mustard oil.


Prostaglandins | 1988

Oxidative metabolism of dihomogammalinolenic acid by guinea pig epidermis: evidence of generation of anti-inflammatory products.

Craig C. Miller; Catherine A. McCreedy; A. Daniel Jones; Vincent A. Ziboh

Reports that vegetable oils which contain gamma-linolenic acid (18:3n-6) may exert beneficial effects on cutaneous disorders prompted us to investigate whether epidermis possesses the ability to transform dihomogammalinolenic acid (20:3n-6), the epidermal elongase product of 18:3n-6, into oxidative metabolites with anti-inflammatory potential. Incubations of [1-14C]20:3n-6 with the 105,000 g particulate (microsomal) fraction from guinea pig epidermal homogenate resulted in the formation of the 1-series prostaglandin PGE1. The identity of this product was confirmed by argentation thin-layer chromatography (TLC), reverse phase-HPLC, and conversion with alkali treatment to PGB1. Incubations of [1-14C]20:3n-6 with the 105,000 g supernatant (cytosolic) fraction from guinea pig epidermal homogenate resulted in the formation of the 15-lipoxygenase product 15-hydroxy-8, 11, 13-eicosatrienoic acid (15-OH-20:3n6). The identity of this product was confirmed by normal phase-HPLC and gas chromatography/mass spectrometry (GC/MS). Thus, data from these studies indicate the capacity of enzymes in the microsomal and cytosolic fractions of guinea pig epidermal homogenates to transform 20:3n-6 to the eicosanoids PGE1 and 15-OH 20:3n-6, products which reportedly have anti-inflammatory properties. The in vivo significance of these findings remains to be explored.


Prostaglandins | 1974

Inhibition of sheep vesicular gland oxygenase by unsaturated fatty acids from skin of essential fatty acid deficient rats

Vincent A. Ziboh; Jack Y. Vanderhoek; William E.M. Lands

Abstract Unsaturated fatty acids present in the lipids of essential fatty acid (EFA)-deficient rats were found to inhibit the oxygenase activity of sheep vesicular gland in an instantaneous, reversible manner. However, competitive inhibition by high levels of these acids cannot account fully for the reported loss of prostaglandin synthetic capacity of these EFA-deficient animals. A similar competitive inhibition pattern was observed with several anti-inflammatory drugs tested, whereas others also exhibited a time-dependent destructive effect on the oxygenase of the sheep vesicular gland. The relative effectiveness of these drugs in treating inflammations of the skin paralleled their in vitro effects on the vesicular gland oxygenase.


Biochemical and Biophysical Research Communications | 1984

Inability of skin enzyme preparations to biosynthesize arachidonic acid from linoleic acid

Robert S. Chapkin; Vincent A. Ziboh

The lack of any information as to the origin of epidermal arachidonic acid, an important precursor of eicosanoids in the epidermis, prompted us to determine in vitro whether or not microsomal preparations from rat and guinea pig epidermis possess the delta 6 and delta 5 desaturase activities. The incubations were performed in parallel with microsomal preparations from liver of these animals where activities for these enzymes have previously been reported. The conversions of radioactive fatty acids were determined after methylation and separation of the 14C-fatty acid methyl esters by argentation thin layer chromatography. Data from these studies demonstrated that delta 5 desaturase activity is markedly lower in guinea pig liver than in rat liver. Interestingly, preparations from rat and guinea pig epidermis at all concentrations tested lacked the capacity to transform either linoleic acid into gammalinolenic acid or dihomogammalinolenic acid into arachidonic acid. This observation implies that arachidonic acid that is present in the epidermal phospholipids is biosynthesized elsewhere endogenously and transported to the epidermis for esterification into the phospholipids. The site of this biosynthesis is presumably the liver and the mode of transport to the epidermis remains to be determined. These studies indicate arachidonic acid per se as an essential fatty acid for the epidermis.


Molecular and Cellular Biochemistry | 2002

Inhibition of TNFα-induced cyclooxygenase-2 expression by amentoflavone through suppression of NF-κB activation in A549 cells

Tinku Banerjee; Giuseppe Valacchi; Vincent A. Ziboh; Albert van der Vliet

Amentoflavone, a biflavonoid with antiinflammatory activity, downregulates COX-2 expression in TNFα-activated A549 cells with concomitant inhibition of NF-κB mediated signaling cascades. We demonstrate here that amentoflavone inhibits NF-κB/DNA binding activity potently along with inhibition of degradation of IκBα and NF-κB translocation into nucleus in TNFα-activated A549 cells. This flavonoid upregulates PPAR γ, a transcription factor involved in repressing many cytokine-induced gene expressions. Hence amentoflavone, a dietary constituent, may be of therapeutic value for several lung diseases where COX-2 plays an important role.


Biochemical and Biophysical Research Communications | 1988

Gammalinolenic acid-enriched diet alters cutaneous eicosanoids.

Craig C. Miller; Vincent A. Ziboh

There are reports that vegetable oils containing gammalinolenic acid (GLA) may exert beneficial effects on inflammatory skin disorders. To determine whether or not dietary GLA exerts any modulatory role on cutaneous eicosanoids, guinea pigs were fed either a control diet containing safflower oil (less than 0.5% GLA) or borage oil, a GLA-rich diet containing 25% GLA. After an 8-week feeding period, epidermal samples from both animal groups were analyzed for fatty acid composition and tissue eicosanoids. Analysis of epidermal neutral lipids and phospholipids in borage oil-fed animals showed a marked increase in GLA and its elongase product, dihomogammalinolenic acid (DGLA). Similarly, analysis of epidermal eicosanoids in the borage oil-fed animals revealed significant increases in the amounts of the 15-hydroxy fatty acid (15-OH-20:3n-6) and prostaglandin PGE1, both metabolites of DGLA. Since these metabolites have anti-inflammatory potential, our results suggest that increased dietary GLA could result in the generation of local anti-inflammatory metabolites thus providing a non-toxic approach to suppression of cutaneous inflammatory skin disorders.


Progress in Lipid Research | 1988

Metabolism and function of skin lipids

Vincent A. Ziboh; Robert S. Chapkin

It is apparent from this review that the skin is an organ displaying a highly active metabolism of PUFAs. It possesses the capacity to biosynthesize, metabolize and interconvert a variety of lipids as outlined in the review. Its inability to desaturate the essential fatty acids underscores the significance of these PUFAs in cutaneous biology. For instance, increases in the concentrations of 20:4n6 as well as certain autacoids are associated with many inflammatory-hyperproliferative dermatoses. However, the origin of 20:4n6, which is found complexed to skin phospholipids, has until recently remained a mystery. Studies undertaken in our laboratory designed to delineate the origin of epidermal 20:4n6, and to elucidate the effects of EFA deficiency and crossover replenishment with dietary oils on epidermal lipid metabolism have demonstrated: (i) that microsomal preparations from rat and guinea pig epidermis lack the capacity to transform 18:2n6 into 18:3n6 (catalyzed by the enzyme delta 6 desaturase) and 20:3n6 into 20:4n6 (catalyzed by the enzyme delta 5 desaturase). This observation implies that 20:4n6, a component of epidermal phospholipids, is biosynthesized elsewhere endogenously and transported to the epidermis for esterification into the phospholipids. In an extension of this work, epidermal microsomal preparations from normal human and diseased human epidermis (clinically uninvolved and involved psoriatic epidermis) were examined in order to determine the activities of the delta 6 and the delta 5 desaturases as well as the elongase, respectively. Our data revealed that normal, uninvolved and involved human epidermal preparations lack the capacity to desaturate 18:2n6 to 18:3n6 and 20:3n6 to 20:4n6. These results are interesting in view of the fact that 20:4n6 metabolites participate in the phlogistic and hyperproliferative processes in psoriasis. It is likely that the increases in the 20:4n6-derived eicosanoids, which are prominent in uninvolved and involved psoriatic skin, are the result of an enhanced epidermal phospholipase A2 activity. The heightened lipase activity would lead to an elevated concentration of free 20:4n6 which, in turn, would result in the reported increase of epidermal eicosanoid levels. (ii) Incubation of 18:3n6 with microsomal preparations from skin specimens from normal, uninvolved and involved psoriatic epidermis revealed the presence of elongase activity capable of converting 18:3n6 into 20:3n6. This activity was markedly elevated (5-fold) in involved hyperproliferative psoriatic preparations.(ABSTRACT TRUNCATED AT 250 WORDS)


Lipids | 1996

The significance of polyunsaturated fatty acids in cutaneous biology

Vincent A. Ziboh

The skin epidermis displays a highly active metabolism of polyunsaturated fatty acids (PUFA). Dietary deficiency of linoleic acid (LA) and 18-carbon (n-6) PUFA results in characteristic scaly skin disorder and excessive epidermal water loss. Arachidonic acid, a 20-carbon (n-6) PUFA is metabolized via the cyclooxygenase pathway into predominantly prostaglandin E2 (PGE2) PGF2α′ and PGD2 and via the lipoxygenase pathway into predominantly 15-hydroxyeicosatetraenoic acid (15-HETE). The prostaglandins modulate normal skin physiological processes at low concentrations and inflammatory reactions at high concentrations. Similarly, the very active epidermal 15-lipoxygenase transforms dihomogammalinolenic acid (DGLA) into 15-hydroxy eicosatrienoic acid (15-HETrE), eicosapentaenoic acid (EPA) into 15-hydroxyeicosapentaenoic acid (15-HEPE) and docosahexaenoic acid (DHA) into 17-hydroxydocosahexaenoic acid (17-HDoHE), respectively. These monohydroxy acids exhibit anti-inflammatory properties. In contrast, the 18-carbon (n-6) PUFA is transformed into 13-hydroxy-9,11-octadecadienoic acid (13-HODE), which exerts antiproliferative properties in the tissue. Thus the supplementation of diets with appropriate purified vegetable oils and/or fish oil may generate local cutaneous anti-inflammatory metabolites which could serve as a less toxicin vivo monotherapy or as adjuncts to standard therapeutic regimens for the management of skin inflammaory disorders.

Collaboration


Dive into the Vincent A. Ziboh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wilson Tang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hung Pham

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge