Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vincent Burrus is active.

Publication


Featured researches published by Vincent Burrus.


Molecular Microbiology | 2002

Conjugative transposons: the tip of the iceberg

Vincent Burrus; Guillaume Pavlovic; Bernard Decaris; Gérard Guédon

Elements that excise and integrate, such as prophages, and transfer by conjugation, such as plasmids, have been found in various bacteria. These elements appear to have a diversified set of characteristics including cell‐to‐cell contact using pili or cell aggregation, transfer of single‐stranded or double‐stranded DNA, low or high specificity of integration and serine or tyrosine recombinases. This has led to a highly heterogeneous nomenclature, including conjugative transposons, integrative ‘plasmids’, genomic islands and numerous unclassified elements. However, all these elements excise by site‐specific recombination, transfer the resulting circular form by conjugation and integrate by recombination between a specific site of this circular form and a site in the genome of their host. Whereas replication of the circular form probably occurs during conjugation, this replication is not involved in the maintenance of the element. In this review, we show that these elements share very similar characteristics and, therefore, we propose to classify them as integrative and conjugative elements (ICEs). These elements evolve by acquisition or exchanges of modules with various transferable elements including at least ICEs and plasmids. The ICEs are probably widespread among the bacteria.


PLOS Genetics | 2009

Comparative ICE Genomics: Insights into the Evolution of the SXT/R391 Family of ICEs

Rachel A. F. Wozniak; Derrick E. Fouts; Matteo Spagnoletti; Mauro Maria Colombo; Daniela Ceccarelli; Geneviève Garriss; Christine Dery; Vincent Burrus; Matthew K. Waldor

Integrating and conjugative elements (ICEs) are one of the three principal types of self-transmissible mobile genetic elements in bacteria. ICEs, like plasmids, transfer via conjugation; but unlike plasmids and similar to many phages, these elements integrate into and replicate along with the host chromosome. Members of the SXT/R391 family of ICEs have been isolated from several species of gram-negative bacteria, including Vibrio cholerae, the cause of cholera, where they have been important vectors for disseminating genes conferring resistance to antibiotics. Here we developed a plasmid-based system to capture and isolate SXT/R391 ICEs for sequencing. Comparative analyses of the genomes of 13 SXT/R391 ICEs derived from diverse hosts and locations revealed that they contain 52 perfectly syntenic and nearly identical core genes that serve as a scaffold capable of mobilizing an array of variable DNA. Furthermore, selection pressure to maintain ICE mobility appears to have restricted insertions of variable DNA into intergenic sites that do not interrupt core functions. The variable genes confer diverse element-specific phenotypes, such as resistance to antibiotics. Functional analysis of a set of deletion mutants revealed that less than half of the conserved core genes are required for ICE mobility; the functions of most of the dispensable core genes are unknown. Several lines of evidence suggest that there has been extensive recombination between SXT/R391 ICEs, resulting in re-assortment of their respective variable gene content. Furthermore, our analyses suggest that there may be a network of phylogenetic relationships among sequences found in all types of mobile genetic elements.


Cellular and Molecular Life Sciences | 2002

Comparison of SXT and R391, two conjugative integrating elements: definition of a genetic backbone for the mobilization of resistance determinants.

John W. Beaber; Vincent Burrus; Bianca Hochhut; Matthew K. Waldor

Abstract. The SXT element (SXT) is becoming an increasingly prevalent vector for the dissemination of antibiotic resistances in Vibrio cholerae. SXT is a member of a larger family of elements, formerly defined as IncJ plasmids, that are self-transmissible by conjugation and integrate site-specifically into the host chromosome. Comparison of the DNA sequences of SXT and R391, an IncJ element from Providencia rettgeri, indicate that these elements consist of a conserved backbone that mediates the regulation, excision/integration and conjugative transfer of the elements. Both elements have insertions into this backbone that either confer the element-specific properties or are of unknown function. Interestingly, the conserved SXT and R391 backbone apparently contains hotspots for insertion of additional DNA sequences. This backbone represents a scaffold for the mobilization of genetic material between a wide range of Gram-negative bacteria, allowing for rapid adaptation to changing envi ronments.


PLOS Genetics | 2009

Mobile antibiotic resistance encoding elements promote their own diversity.

Geneviève Garriss; Matthew K. Waldor; Vincent Burrus

Integrating conjugative elements (ICEs) are a class of bacterial mobile genetic elements that disseminate via conjugation and then integrate into the host cell genome. The SXT/R391 family of ICEs consists of more than 30 different elements that all share the same integration site in the host chromosome but often encode distinct properties. These elements contribute to the spread of antibiotic resistance genes in several gram-negative bacteria including Vibrio cholerae, the agent of cholera. Here, using comparative analyses of the genomes of several SXT/R391 ICEs, we found evidence that the genomes of these elements have been shaped by inter–ICE recombination. We developed a high throughput semi-quantitative method to explore the genetic determinants involved in hybrid ICE formation. Recombinant ICE formation proved to be relatively frequent, and to depend on host (recA) and ICE (s065 and s066) loci, which can independently and potentially cooperatively mediate hybrid ICE formation. s065 and s066, which are found in all SXT/R391 ICEs, are orthologues of the bacteriophage λ Red recombination genes bet and exo, and the s065/s066 recombination system is the first Red-like recombination pathway to be described in a conjugative element. Neither ICE excision nor conjugative transfer proved to be essential for generation of hybrid ICEs. Instead conjugation facilitates the segregation of hybrids and could provide a means to select for functional recombinant ICEs containing novel combinations of genes conferring resistance to antibiotics. Thus, ICEs promote their own diversity and can yield novel mobile elements capable of disseminating new combinations of antibiotic resistance genes.


PLOS Genetics | 2011

c-di-GMP turn-over in Clostridium difficile is controlled by a plethora of diguanylate cyclases and phosphodiesterases.

Eric Bordeleau; Louis-Charles Fortier; François Malouin; Vincent Burrus

Clostridium difficile infections have become a major healthcare concern in the last decade during which the emergence of new strains has underscored this bacteriums capacity to cause persistent epidemics. c-di-GMP is a bacterial second messenger regulating diverse bacterial phenotypes, notably motility and biofilm formation, in proteobacteria such as Vibrio cholerae, Pseudomonas aeruginosa, and Salmonella. c-di-GMP is synthesized by diguanylate cyclases (DGCs) that contain a conserved GGDEF domain. It is degraded by phosphodiesterases (PDEs) that contain either an EAL or an HD-GYP conserved domain. Very little is known about the role of c-di-GMP in the regulation of phenotypes of Gram-positive or fastidious bacteria. Herein, we exposed the main components of c-di-GMP signalling in 20 genomes of C. difficile, revealed their prevalence, and predicted their enzymatic activity. Ectopic expression of 31 of these conserved genes was carried out in V. cholerae to evaluate their effect on motility and biofilm formation, two well-characterized phenotype alterations associated with intracellular c-di-GMP variation in this bacterium. Most of the predicted DGCs and PDEs were found to be active in the V. cholerae model. Expression of truncated versions of CD0522, a protein with two GGDEF domains and one EAL domain, suggests that it can act alternatively as a DGC or a PDE. The activity of one purified DGC (CD1420) and one purified PDE (CD0757) was confirmed by in vitro enzymatic assays. GTP was shown to be important for the PDE activity of CD0757. Our results indicate that, in contrast to most Gram-positive bacteria including its closest relatives, C. difficile encodes a large assortment of functional DGCs and PDEs, revealing that c-di-GMP signalling is an important and well-conserved signal transduction system in this human pathogen.


Journal of Bacteriology | 2008

Genomic and Functional Analysis of ICEPdaSpa1, a Fish-Pathogen-Derived SXT-Related Integrating Conjugative Element That Can Mobilize a Virulence Plasmid

Carlos R. Osorio; Joeli Marrero; Rachel A. F. Wozniak; Manuel L. Lemos; Vincent Burrus; Matthew K. Waldor

Integrating conjugative elements (ICEs) are self-transmissible mobile elements that transfer between bacteria via conjugation and integrate into the host chromosome. SXT and related ICEs became prevalent in Asian Vibrio cholerae populations in the 1990s and play an important role in the dissemination of antibiotic resistance genes in V. cholerae. Here, we carried out genomic and functional analyses of ICEPdaSpa1, an SXT-related ICE derived from a Spanish isolate of Photobacterium damselae subsp. piscicida, the causative agent of fish pasteurellosis. The approximately 102-kb DNA sequence of ICEPdaSpa1 shows nearly 97% DNA sequence identity to SXT in genes that encode essential ICE functions, including integration and excision, conjugal transfer, and regulation. However, approximately 25 kb of ICEPdaSpa1 DNA, including a tetracycline resistance locus, is not present in SXT. Most ICEPdaSpa1-specific DNA is inserted at loci where other SXT-related ICEs harbor element-specific DNA. ICEPdaSpa1 excises itself from the chromosome and is transmissible to other Photobacterium strains, as well as to Escherichia coli, in which it integrates into prfC. Interestingly, the P. damselae virulence plasmid pPHDP10 could be mobilized from E. coli in an ICEPdaSpa1-dependent fashion via the formation of a cointegrate between pPHDP10 and ICEPdaSpa1. pPHDP10-Cm integrated into ICEPdaSpa1 in a non-site-specific fashion independently of RecA. The ICEPdaSpa1::pPHDP10 cointegrates were stable, and markers from both elements became transmissible at frequencies similar to those observed for the transfer of ICEPdaSpa1 alone. Our findings reveal the plasticity of ICE genomes and demonstrate that ICEs can enable virulence gene transfer.


Applied and Environmental Microbiology | 2001

Characterization of a Novel Type II Restriction-Modification System, Sth368I, Encoded by the Integrative Element ICESt1 of Streptococcus thermophilus CNRZ368

Vincent Burrus; Cyril Bontemps; Bernard Decaris; Gérard Guédon

ABSTRACT A novel type II restriction and modification (R-M) system,Sth368I, which confers resistance to φST84, was found inStreptococcus thermophilus CNRZ368 but not in the very closely related strain A054. Partial sequencing of the integrative conjugative element ICESt1, carried by S. thermophilus CNRZ368 but not by A054, revealed a divergent cluster of two genes, sth368IR and sth368IM. The protein sequence encoded by sth368IR is related to the type II endonucleases R.LlaKR2I and R.Sau3AI, which recognize and cleave the sequence 5′-GATC-3′. The protein sequence encoded by sth368IM is very similar to numerous type II 5-methylcytosine methyltransferases, including M.LlaKR2I and M.Sau3AI. Cell extracts of CNRZ368 but not A054 were found to cleave at the GATC site. Furthermore, the C residue of the sequence 5′-GATC-3′ was found to be methylated in CNRZ368 but not in A054. Cloning and integration of a copy of sth368IR and sth368IMin the A054 chromosome confers on this strain phenotypes similar to those of CNRZ368, i.e., phage resistance, endonuclease activity of cell extracts, and methylation of the sequence 5′-GATC-3′. Disruption of sth368IR removes resistance and restriction activity. We conclude that ICESt1 encodes an R-M system, Sth368I, which recognizes the sequence 5′-GATC-3′ and is related to the Sau3AI and LlaKR2I restriction systems.


Journal of Bacteriology | 2015

Cyclic Di-GMP Riboswitch-Regulated Type IV Pili Contribute to Aggregation of Clostridium difficile

Eric Bordeleau; Daniel A. Lafontaine; Louis-Charles Fortier; Rita Tamayo; Vincent Burrus

Clostridium difficile is an anaerobic Gram-positive bacterium that causes intestinal infections with symptoms ranging from mild diarrhea to fulminant colitis. Cyclic diguanosine monophosphate (c-di-GMP) is a bacterial second messenger that typically regulates the switch from motile, free-living to sessile and multicellular behaviors in Gram-negative bacteria. Increased intracellular c-di-GMP concentration in C. difficile was recently shown to reduce flagellar motility and to increase cell aggregation. In this work, we investigated the role of the primary type IV pilus (T4P) locus in c-di-GMP-dependent cell aggregation. Inactivation of two T4P genes, pilA1 (CD3513) and pilB1 (CD3512), abolished pilus formation and significantly reduced cell aggregation under high c-di-GMP conditions. pilA1 is preceded by a putative c-di-GMP riboswitch, predicted to be transcriptionally active upon c-di-GMP binding. Consistent with our prediction, high intracellular c-di-GMP concentration increased transcript levels of T4P genes. In addition, single-round in vitro transcription assays confirmed that transcription downstream of the predicted transcription terminator was dose dependent and specific to c-di-GMP binding to the riboswitch aptamer. These results support a model in which T4P gene transcription is upregulated by c-di-GMP as a result of its binding to an upstream transcriptionally activating riboswitch, promoting cell aggregation in C. difficile.


Applied and Environmental Microbiology | 2006

SXT-Related Integrating Conjugative Element in New World Vibrio cholerae

Vincent Burrus; Roberto Quezada-Calvillo; Joeli Marrero; Matthew K. Waldor

ABSTRACT SXT-related integrating conjugative elements (ICEs) became prevalent in Asian Vibrio cholerae populations after V. cholerae O139 emerged. Here, we describe an SXT-related ICE, ICEVchMex1, in a Mexican environmental V. cholerae isolate. Identification of ICEVchMex1 represents the first description of an SXT-related ICE in the Western Hemisphere. The significant differences between the SXT and ICEVchMex1 genomes suggest that these ICEs have evolved independently.


PLOS Genetics | 2014

The Master Activator of IncA/C Conjugative Plasmids Stimulates Genomic Islands and Multidrug Resistance Dissemination

Nicolas Carraro; Dominick Matteau; Peng Luo; Sébastien Rodrigue; Vincent Burrus

Dissemination of antibiotic resistance genes occurs mostly by conjugation, which mediates DNA transfer between cells in direct contact. Conjugative plasmids of the IncA/C incompatibility group have become a substantial threat due to their broad host-range, the extended spectrum of antimicrobial resistance they confer, their prevalence in enteric bacteria and their very efficient spread by conjugation. However, their biology remains largely unexplored. Using the IncA/C conjugative plasmid pVCR94ΔX as a prototype, we have investigated the regulatory circuitry that governs IncA/C plasmids dissemination and found that the transcriptional activator complex AcaCD is essential for the expression of plasmid transfer genes. Using chromatin immunoprecipitation coupled with exonuclease digestion (ChIP-exo) and RNA sequencing (RNA-seq) approaches, we have identified the sequences recognized by AcaCD and characterized the AcaCD regulon. Data mining using the DNA motif recognized by AcaCD revealed potential AcaCD-binding sites upstream of genes involved in the intracellular mobility functions (recombination directionality factor and mobilization genes) in two widespread classes of genomic islands (GIs) phylogenetically unrelated to IncA/C plasmids. The first class, SGI1, confers and propagates multidrug resistance in Salmonella enterica and Proteus mirabilis, whereas MGIVmi1 in Vibrio mimicus belongs to a previously uncharacterized class of GIs. We have demonstrated that through expression of AcaCD, IncA/C plasmids specifically trigger the excision and mobilization of the GIs at high frequencies. This study provides new evidence of the considerable impact of IncA/C plasmids on bacterial genome plasticity through their own mobility and the mobilization of genomic islands.

Collaboration


Dive into the Vincent Burrus's collaboration.

Top Co-Authors

Avatar

Matthew K. Waldor

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Eric Bordeleau

Université de Sherbrooke

View shared research outputs
Top Co-Authors

Avatar

Nicolas Carraro

Université de Sherbrooke

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniela Ceccarelli

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniela Ceccarelli

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Bernard Decaris

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge