Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vincent Carré is active.

Publication


Featured researches published by Vincent Carré.


Rapid Communications in Mass Spectrometry | 2010

Determination and imaging of metabolites from Vitis vinifera leaves by laser desorption/ionisation time-of-flight mass spectrometry

Grégory Hamm; Vincent Carré; Anne Poutaraud; Benoı̂t Maunit; Gilles Frache; Didier Merdinoglu; Jean-François Muller

Analysis of grapevine phytoalexins at the surface of Vitis vinifera leaves has been achieved by laser desorption/ionisation time-of-flight mass spectrometry (LDI-ToFMS) without matrix deposition. This simple and rapid sampling method was successfully applied to map small organic compounds at the surface of grapevine leaves. It was also demonstrated that the laser wavelength is a highly critical parameter. Both 266 and 337 nm laser wavelengths were used but the 266 nm wavelength gave increased spatial resolution and better sensitivity for the detection of the targeted metabolites (resveratrol and linked stilbene compounds). Mass spectrometry imaging of grapevine Cabernet Sauvignon leaves revealed specific locations with respect to Plasmopara viticola pathogen infection or light illumination.


Analytical Chemistry | 2011

Analysis of Mainstream and Sidestream Cigarette Smoke Particulate Matter by Laser Desorption Mass Spectrometry

Sébastien Schramm; Vincent Carré; Jean-Luc Scheffler; Frédéric Aubriet

Laser desorption ionization Fourier transform ion cyclotron resonance mass spectrometry (LDI-FTICRMS) was used to investigate particulate matter (PM) associated with mainstream (MSS) and sidestream cigarette smokes (SSS). The high mass resolution and the high mass measurement accuracy allowed a molecular formula for each detected signal in the 150-500 m/z range to be assigned. The high number of peaks observed in mass spectra required additional data processing to extract information. In this context, Kendrick maps and Van Krevelen diagrams were drawn. These postacquisition treatments were used to more easily compare different cigarette smokes: (i) MSS from different cigarettes and (ii) MSS and SSS from the same cigarette. In both ion detection modes, most of the detected species were found to be attributed to C(6-31)H(2-35)N(0-7)O(0-9) compounds. The compounds observed in the study of SSS appeared to be more unsaturated and less oxygenated than those observed when MSS of the same cigarette was investigated.


Molecules | 2014

MALDI Mass Spectrometry Imaging for the Simultaneous Location of Resveratrol, Pterostilbene and Viniferins on Grapevine Leaves

Loïc Becker; Vincent Carré; Anne Poutaraud; Didier Merdinoglu; Patrick Chaimbault

To investigate the in-situ response to a stress, grapevine leaves have been subjected to mass spectrometry imaging (MSI) experiments. The Matrix Assisted Laser Desorption/Ionisation (MALDI) approach using different matrices has been evaluated. Among all the tested matrices, the 2,5-dihydroxybenzoic acid (DHB) was found to be the most efficient matrix allowing a broader range of detected stilbene phytoalexins. Resveratrol, but also more toxic compounds against fungi such as pterostilbene and viniferins, were identified and mapped. Their spatial distributions on grapevine leaves irradiated by UV show their specific colocation around the veins. Moreover, MALDI MSI reveals that resveratrol (and piceids) and viniferins are not specifically located on the same area when leaves are infected by Plasmopara viticola. Results obtained by MALDI mass spectrometry imaging demonstrate that this technique would be essential to improve the level of knowledge concerning the role of the stilbene phytoalexins involved in a stress event.


Analytica Chimica Acta | 2010

Potential of laser mass spectrometry for the analysis of environmental dust particles--a review.

Frédéric Aubriet; Vincent Carré

Laser-based aerosol mass spectrometry in both on-line and off-line modes has become an essential tool to analyze airborne and industrial dust particles. The versatility of laser desorption and/or ionization appears to be a powerful tool to obtain the global composition of environment particles. Laser mass spectrometry to analyze inorganic (elemental and molecular), organic and biological aerosol components without or with a restricted number of preparation steps in both on-line and off-line modes can be regarded as an ideal analytical machine. However, some limitations are associated to this range of mass spectrometry techniques. This review presents the fundamental aspects of laser-based mass spectrometry and the different kinds of analyses, which may be done. A selected number of applications are then given which allows the reader to consider both the capabilities and the drawbacks of laser mass spectrometry to analyze dust environmental particles. Critical discussion is focused on comparison and new trends of these aerosol analytical techniques.


Analytica Chimica Acta | 2013

Metabolic study of grapevine leaves infected by downy mildew using negative ion electrospray--Fourier transform ion cyclotron resonance mass spectrometry.

Loïc Becker; Anne Poutaraud; Grégory Hamm; Jean-François Muller; Didier Merdinoglu; Vincent Carré; Patrick Chaimbault

Grapevine is of worldwide economic importance due to wine production. However, this culture is often affected by pathogens causing severe harvest losses. Understanding host-pathogen relationships may be a key to solve this problem. In this paper, we evaluate the direct flow injection by electrospray - Fourier transform ion cyclotron resonance mass spectrometry (MS) of leaf extracts as a rapid method for the study of grapevine response to downy mildew (Plasmopara viticola) attack. The comparison of MS profiles obtained from control and infected leaves of different levels of resistant grapevines highlights several classes of metabolites (mainly saccharides, acyl lipids, hydroxycinnamic acids derivatives and flavonoids) which are identified using high resolution MS and tandem MS (MS/MS). Statistical analyses of 19 markers show a clear segregation between inoculated and healthy samples. This study points out relative high levels of disaccharides, acyl lipids and glycerophosphoinositol in inoculated samples. Sulfoquinovosyl diacylglycerols also emerge as possible metabolites involved in plant defense.


Origins of Life and Evolution of Biospheres | 2016

Chemical Analysis of a "Miller-Type" Complex Prebiotic Broth: Part I: Chemical Diversity, Oxygen and Nitrogen Based Polymers.

Eva Wollrab; Sabrina Scherer; Frédéric Aubriet; Vincent Carré; Teresa Carlomagno; Luca Codutti; Albrecht Ott

In a famous experiment Stanley Miller showed that a large number of organic substances can emerge from sparking a mixture of methane, ammonia and hydrogen in the presence of water (Miller, Science 117:528–529, 1953). Among these substances Miller identified different amino acids, and he concluded that prebiotic events may well have produced many of Life’s molecular building blocks. There have been many variants of the original experiment since, including different gas mixtures (Miller, J Am Chem Soc 77:2351–2361, 1955; Oró Nature 197:862–867, 1963; Schlesinger and Miller, J Mol Evol 19:376–382, 1983; Miyakawa et al., Proc Natl Acad Sci 99:14,628–14,631, 2002). Recently some of Miller’s remaining original samples were analyzed with modern equipment (Johnson et al. Science 322:404–404, 2008; Parker et al. Proc Natl Acad Sci 108:5526–5531, 2011) and a total of 23 racemic amino acids were identified. To give an overview of the chemical variety of a possible prebiotic broth, here we analyze a “Miller type” experiment using state of the art mass spectrometry and NMR spectroscopy. We identify substances of a wide range of saturation, which can be hydrophilic, hydrophobic or amphiphilic in nature. Often the molecules contain heteroatoms, with amines and amides being prominent classes of molecule. In some samples we detect ethylene glycol based polymers. Their formation in water requires the presence of a catalyst. Contrary to expectations, we cannot identify any preferred reaction product. The capacity to spontaneously produce this extremely high degree of molecular variety in a very simple experiment is a remarkable feature of organic chemistry and possibly prerequisite for Life to emerge. It remains a future task to uncover how dedicated, organized chemical reaction pathways may have arisen from this degree of complexity.


Angewandte Chemie | 2017

Controlling the Host‐Guest Interaction Mode through a Redox Stimulus

György Szalóki; Vincent Croué; Vincent Carré; Frédéric Aubriet; Olivier Alévêque; Eric Levillain; Magali Allain; Juan Aragó; Enrique Ortí; Sébastien Goeb; Marc Sallé

A proof-of-concept related to the redox-control of the binding/releasing process in a host-guest system is achieved by designing a neutral and robust Pt-based redox-active metallacage involving two extended-tetrathiafulvalene (exTTF) ligands. When neutral, the cage is able to bind a planar polyaromatic guest (coronene). Remarkably, the chemical or electrochemical oxidation of the host-guest complex leads to the reversible expulsion of the guest outside the cavity, which is assigned to a drastic change of the host-guest interaction mode, illustrating the key role of counteranions along the exchange process. The reversible process is supported by various experimental data (1 H NMR spectroscopy, ESI-FTICR, and spectroelectrochemistry) as well as by in-depth theoretical calculations performed at the density functional theory (DFT) level.


New Journal of Chemistry | 2017

A self-assembled M2L4 cage incorporating electron-rich 9-(1,3-dithiol-2-ylidene)fluorene units

Vincent Croué; Serhii Krykun; Magali Allain; Yohann Morille; Frédéric Aubriet; Vincent Carré; Zoia Voitenko; Sébastien Goeb; Marc Sallé

An electron-rich redox-active M2L4 cage is depicted. The cage is constructed through coordination driven self-assembly of a 9-(1,3-dithiol-2-ylidene)fluorene bis-pyridyl ligand in the presence of the Pd(BF4)2(CH3CN)4 complex. The corresponding discrete structure has been fully characterized in the solution as well in the solid state (crystal structure), showing notably that each of the four ligands surrounding the cavity can be reversibly oxidized upon a one electron process.


Analytica Chimica Acta | 2017

Combination of electrospray ionization, atmospheric pressure photoionization and laser desorption ionization Fourier transform ion cyclotronic resonance mass spectrometry for the investigation of complex mixtures - Application to the petroleomic analysis of bio-oils

Jasmine Hertzog; Vincent Carré; Yann Le Brech; Colin Logan Mackay; Anthony Dufour; Ondřej Mašek; Frédéric Aubriet

The comprehensive description of complex mixtures such as bio-oils is required to understand and improve the different processes involved during biological, environmental or industrial operation. In this context, we have to consider how different ionization sources can improve a non-targeted approach. Thus, the Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) has been coupled to electrospray ionization (ESI), laser desorption ionization (LDI) and atmospheric pressure photoionization (APPI) to characterize an oak pyrolysis bio-oil. Close to 90% of the all 4500 compound formulae has been attributed to CxHyOz with similar oxygen class compound distribution. Nevertheless, their relative abundance in respect with their double bound equivalent (DBE) value has evidenced significant differences depending on the ion source used. ESI has allowed compounds with low DBE but more oxygen atoms to be ionized. APPI has demonstrated the efficient ionization of less polar compounds (high DBE values and less oxygen atoms). The LDI behavior of bio-oils has been considered intermediate in terms of DBE and oxygen amounts but it has also been demonstrated that a significant part of the features are specifically detected by this ionization method. Thus, the complementarity of three different ionization sources has been successfully demonstrated for the exhaustive characterization by petroleomic approach of a complex mixture.


Rapid Communications in Mass Spectrometry | 2011

Evaluation of combined matrix‐assisted laser desorption/ionization time‐of‐flight and matrix‐assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry experiments for peptide mass fingerprinting analysis

David Da Silva; Thierry Wasselin; Vincent Carré; Patrick Chaimbault; Lina Bezdetnaya; Benoît Maunit; Jean-François Muller

Peptide Mass Fingerprinting (PMF) is still of significant interest in proteomics because it allows a large number of complex samples to be rapidly screened and characterized. The main part of post-translational modifications is generally preserved. In some specific cases, PMF suffers from ambiguous or unsuccessful identification. In order to improve its reliability, a combined approach using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) and matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICRMS) was evaluated. The study was carried out on bovine serum albumin (BSA) digest. The influence of several important parameters (the matrix, the sample preparation method, the amount of the analyte) on the MOWSE score and the protein sequence coverage were evaluated to allow the identification of specific effects. A careful investigation of the sequence coverage obtained by each kind of experiment ensured the detection of specific peptides for each experimental condition. Results highlighted that DHB-FTICRMS and DHB- or CHCA-TOFMS are the most suited combinations of experimental conditions to achieve PMF analysis. The association (convolution) of the data obtained by each of these techniques ensured a significant increase in the MOWSE score and the protein sequence coverage.

Collaboration


Dive into the Vincent Carré's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne Poutaraud

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Didier Merdinoglu

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge