Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vincent Delorme is active.

Publication


Featured researches published by Vincent Delorme.


ACS Chemical Biology | 2015

2-Carboxyquinoxalines Kill Mycobacterium tuberculosis through Noncovalent Inhibition of DprE1

João Neres; Ruben C. Hartkoorn; Laurent R. Chiarelli; Ramakrishna Gadupudi; Maria Rosalia Pasca; Giorgia Mori; Alberto Venturelli; Svetlana Savina; Vadim Makarov; Gaëlle S. Kolly; Elisabetta Molteni; Claudia Binda; Neeraj Dhar; Stefania Ferrari; Priscille Brodin; Vincent Delorme; Valérie Landry; Ana Luisa de Jesus Lopes Ribeiro; Davide Salvatore Francesco Farina; Puneet Saxena; Florence Pojer; Antonio Carta; Rosaria Luciani; Alessio Porta; Giuseppe Zanoni; Edda De Rossi; Maria Paola Costi; Giovanna Riccardi; Stewart T. Cole

Phenotypic screening of a quinoxaline library against replicating Mycobacterium tuberculosis led to the identification of lead compound Ty38c (3-((4-methoxybenzyl)amino)-6-(trifluoromethyl)quinoxaline-2-carboxylic acid). With an MIC99 and MBC of 3.1 μM, Ty38c is bactericidal and active against intracellular bacteria. To investigate its mechanism of action, we isolated mutants resistant to Ty38c and sequenced their genomes. Mutations were found in rv3405c, coding for the transcriptional repressor of the divergently expressed rv3406 gene. Biochemical studies clearly showed that Rv3406 decarboxylates Ty38c into its inactive keto metabolite. The actual target was then identified by isolating Ty38c-resistant mutants of an M. tuberculosis strain lacking rv3406. Here, mutations were found in dprE1, encoding the decaprenylphosphoryl-d-ribose oxidase DprE1, essential for biogenesis of the mycobacterial cell wall. Genetics, biochemical validation, and X-ray crystallography revealed Ty38c to be a noncovalent, noncompetitive DprE1 inhibitor. Structure-activity relationship studies generated a family of DprE1 inhibitors with a range of IC50s and bactericidal activity. Co-crystal structures of DprE1 in complex with eight different quinoxaline analogs provided a high-resolution interaction map of the active site of this extremely vulnerable target in M. tuberculosis.


Science | 2017

Reversion of antibiotic resistance in Mycobacterium tuberculosis by spiroisoxazoline SMARt-420

Nicolas Blondiaux; Martin Moune; Matthieu Desroses; Rosangela Frita; Marion Flipo; Vanessa Mathys; Karine Soetaert; Mehdi Kiass; Vincent Delorme; Kamel Djaout; Vincent Trebosc; Christian Kemmer; René Wintjens; Alexandre Wohlkonig; Rudy Antoine; Ludovic Huot; David Hot; Mireia Coscolla; Julia Feldmann; Sebastien Gagneux; Camille Locht; Priscille Brodin; Marc Gitzinger; Benoit Deprez; Nicolas Willand; Alain R. Baulard

Countering TB prodrug resistance The arsenal of antibiotics for treating tuberculosis (TB) contains many prodrugs, such as ethionamide, which need activation by normal metabolism to release their toxic effects. Ethionamide is potentiated by small molecules. Blondiaux et al. screened for more potent analogs and identified a lead compound called SMARt-420. This small molecule inactivates a TetR-like repressor, EthR2, and boosts ethionamide activation. SMARt-420 successfully promoted clearance of multidrug-resistant strains of Mycobacterium tuberculosis from the lungs of mice. Science, this issue p. 1206 Resistance to an antituberculosis drug can be reversed by small molecules that activate a cryptic enzymatic pathway. Antibiotic resistance is one of the biggest threats to human health globally. Alarmingly, multidrug-resistant and extensively drug-resistant Mycobacterium tuberculosis have now spread worldwide. Some key antituberculosis antibiotics are prodrugs, for which resistance mechanisms are mainly driven by mutations in the bacterial enzymatic pathway required for their bioactivation. We have developed drug-like molecules that activate a cryptic alternative bioactivation pathway of ethionamide in M. tuberculosis, circumventing the classic activation pathway in which resistance mutations have now been observed. The first-of-its-kind molecule, named SMARt-420 (Small Molecule Aborting Resistance), not only fully reverses ethionamide-acquired resistance and clears ethionamide-resistant infection in mice, it also increases the basal sensitivity of bacteria to ethionamide.


Scientific Reports | 2016

STAT3 Represses Nitric Oxide Synthesis in Human Macrophages upon Mycobacterium tuberculosis Infection

Christophe J. Queval; Ok-Ryul Song; Nathalie Deboosere; Vincent Delorme; Anne-Sophie Debrie; Raffaella Iantomasi; Romain Veyron-Churlet; Samuel Jouny; Keely Redhage; Gaspard Deloison; Alain R. Baulard; Mathias Chamaillard; Camille Locht; Priscille Brodin

Mycobacterium tuberculosis is a successful intracellular pathogen. Numerous host innate immune responses signaling pathways are induced upon mycobacterium invasion, however their impact on M. tuberculosis replication is not fully understood. Here we reinvestigate the role of STAT3 specifically inside human macrophages shortly after M. tuberculosis uptake. We first show that STAT3 activation is mediated by IL-10 and occurs in M. tuberculosis infected cells as well as in bystander non-colonized cells. STAT3 activation results in the inhibition of IL-6, TNF-α, IFN-γ and MIP-1β. We further demonstrate that STAT3 represses iNOS expression and NO synthesis. Accordingly, the inhibition of STAT3 is detrimental for M. tuberculosis intracellular replication. Our study thus points out STAT3 as a key host factor for M. tuberculosis intracellular establishment in the early stages of macrophage infection.


Journal of Visualized Experiments | 2014

A Microscopic Phenotypic Assay for the Quantification of Intracellular Mycobacteria Adapted for High-throughput/High-content Screening

Christophe J. Queval; Ok-Ryul Song; Vincent Delorme; Raffaella Iantomasi; Romain Veyron-Churlet; Nathalie Deboosere; Valérie Landry; Alain R. Baulard; Priscille Brodin

Despite the availability of therapy and vaccine, tuberculosis (TB) remains one of the most deadly and widespread bacterial infections in the world. Since several decades, the sudden burst of multi- and extensively-drug resistant strains is a serious threat for the control of tuberculosis. Therefore, it is essential to identify new targets and pathways critical for the causative agent of the tuberculosis, Mycobacterium tuberculosis (Mtb) and to search for novel chemicals that could become TB drugs. One approach is to set up methods suitable for the genetic and chemical screens of large scale libraries enabling the search of a needle in a haystack. To this end, we developed a phenotypic assay relying on the detection of fluorescently labeled Mtb within fluorescently labeled host cells using automated confocal microscopy. This in vitro assay allows an image based quantification of the colonization process of Mtb into the host and was optimized for the 384-well microplate format, which is proper for screens of siRNA-, chemical compound- or Mtb mutant-libraries. The images are then processed for multiparametric analysis, which provides read out inferring on the pathogenesis of Mtb within host cells.


Scientific Reports | 2017

Combination therapy for tuberculosis treatment: pulmonary administration of ethionamide and booster co-loaded nanoparticles

Joana Costa-Gouveia; Elisabetta Pancani; Samuel Jouny; Arnaud Machelart; Vincent Delorme; Giuseppina Salzano; Raffaella Iantomasi; Catherine Piveteau; Christophe J. Queval; Ok-Ryul Song; Marion Flipo; Benoit Deprez; Jean-Paul Saint-André; José Hureaux; Laleh Majlessi; Nicolas Willand; Alain R. Baulard; Priscille Brodin; Ruxandra Gref

Tuberculosis (TB) is a leading infectious cause of death worldwide. The use of ethionamide (ETH), a main second line anti-TB drug, is hampered by its severe side effects. Recently discovered “booster” molecules strongly increase the ETH efficacy, opening new perspectives to improve the current clinical outcome of drug-resistant TB. To investigate the simultaneous delivery of ETH and its booster BDM41906 in the lungs, we co-encapsulated these compounds in biodegradable polymeric nanoparticles (NPs), overcoming the bottlenecks inherent to the strong tendency of ETH to crystallize and the limited water solubility of this Booster. The efficacy of the designed formulations was evaluated in TB infected macrophages using an automated confocal high-content screening platform, showing that the drugs maintained their activity after incorporation in NPs. Among tested formulations, “green” β-cyclodextrin (pCD) based NPs displayed the best physico-chemical characteristics and were selected for in vivo studies. The NPs suspension, administered directly into mouse lungs using a Microsprayer®, was proved to be well-tolerated and led to a 3-log decrease of the pulmonary mycobacterial load after 6 administrations as compared to untreated mice. This study paves the way for a future use of pCD NPs for the pulmonary delivery of the [ETH:Booster] pair in TB chemotherapy.


Cell Reports | 2017

Mycobacterium tuberculosis Controls Phagosomal Acidification by Targeting CISH-Mediated Signaling

Christophe J. Queval; Ok Ryul Song; Jean Philippe Carralot; Jean Michel Saliou; Antonino Bongiovanni; Gaspard Deloison; Nathalie Deboosere; Samuel Jouny; Raffaella Iantomasi; Vincent Delorme; Anne Sophie Debrie; Sei Jin Park; Joana Costa Gouveia; Stanislas Tomavo; Roland Brosch; Akihiko Yoshimura; Edouard Yeramian; Priscille Brodin

Summary Pathogens have evolved a range of mechanisms to counteract host defenses, notably to survive harsh acidic conditions in phagosomes. In the case of Mycobacterium tuberculosis, it has been shown that regulation of phagosome acidification could be achieved by interfering with the retention of the V-ATPase complexes at the vacuole. Here, we present evidence that M. tuberculosis resorts to yet another strategy to control phagosomal acidification, interfering with host suppressor of cytokine signaling (SOCS) protein functions. More precisely, we show that infection of macrophages with M. tuberculosis leads to granulocyte-macrophage colony-stimulating factor (GM-CSF) secretion, inducing STAT5-mediated expression of cytokine-inducible SH2-containing protein (CISH), which selectively targets the V-ATPase catalytic subunit A for ubiquitination and degradation by the proteasome. Consistently, we show that inhibition of CISH expression leads to reduced replication of M. tuberculosis in macrophages. Our findings further broaden the molecular understanding of mechanisms deployed by bacteria to survive.


ACS Chemical Biology | 2017

Fragment-Sized EthR Inhibitors Exhibit Exceptionally Strong Ethionamide Boosting Effect in Whole-Cell Mycobacterium tuberculosis Assays.

Petar O. Nikiforov; Michal Blaszczyk; Sachin Surade; Helena I. Boshoff; Andaleeb Sajid; Vincent Delorme; Nathalie Deboosere; Priscille Brodin; Alain R. Baulard; Clifton E. Barry; Tom L. Blundell; Chris Abell

Small-molecule inhibitors of the mycobacterial transcriptional repressor EthR have previously been shown to act as boosters of the second-line antituberculosis drug ethionamide. Fragment-based drug discovery approaches have been used in the past to make highly potent EthR inhibitors with ethionamide boosting activity both in vitro and ex vivo. Herein, we report the development of fragment-sized EthR ligands with nanomolar minimum effective concentration values for boosting the ethionamide activity in Mycobacterium tuberculosis whole-cell assays.


Molecular Microbiology | 2017

Identification of Aminopyrimidine-Sulfonamides as Potent Modulators of Wag31-mediated Cell Elongation in Mycobacteria

Vinayak Singh; Neeraj Dhar; János Pató; Gaëlle S. Kolly; Jana Korduláková; Martin Forbak; Joanna C. Evans; Rita Székely; Jan Rybniker; Zuzana Palčeková; Júlia Zemanová; Isabella Santi; François Signorino-Gelo; Liliana Rodrigues; Anthony Vocat; Adrian Suarez Covarrubias; Monica G. Rengifo; Kai Johnsson; Sherry L. Mowbray; Joseph Buechler; Vincent Delorme; Priscille Brodin; Graham Knott; José A. Aínsa; Digby F. Warner; György Kéri; Katarína Mikušová; John D. McKinney; Stewart T. Cole; Valerie Mizrahi

There is an urgent need to discover new anti‐tubercular agents with novel mechanisms of action in order to tackle the scourge of drug‐resistant tuberculosis. Here, we report the identification of such a molecule – an AminoPYrimidine‐Sulfonamide (APYS1) that has potent, bactericidal activity against M. tuberculosis. Mutations in APYS1‐resistant M. tuberculosis mapped exclusively to wag31, a gene that encodes a scaffolding protein thought to orchestrate cell elongation. Recombineering confirmed that a Gln201Arg mutation in Wag31 was sufficient to cause resistance to APYS1, however, neither overexpression nor conditional depletion of wag31 impacted M. tuberculosis susceptibility to this compound. In contrast, expression of the wildtype allele of wag31 in APYS1‐resistant M. tuberculosis was dominant and restored susceptibility to APYS1 to wildtype levels. Time‐lapse imaging and scanning electron microscopy revealed that APYS1 caused gross malformation of the old pole of M. tuberculosis, with eventual lysis. These effects resembled the morphological changes observed following transcriptional silencing of wag31 in M. tuberculosis. These data show that Wag31 is likely not the direct target of APYS1, but the striking phenotypic similarity between APYS1 exposure and genetic depletion of Wag31 in M. tuberculosis suggests that APYS1 might indirectly affect Wag31 through an as yet unknown mechanism.


Scientific Reports | 2017

Cyclipostins and Cyclophostin analogs as promising compounds in the fight against tuberculosis

Phuong Chi Nguyen; Vincent Delorme; Anaïs Bénarouche; Benjamin P. Martin; Rishi R. Paudel; Giri R. Gnawali; Abdeldjalil Madani; Rémy Puppo; Valérie Landry; Laurent Kremer; Priscille Brodin; Christopher D. Spilling; Jean-François Cavalier; Stéphane Canaan

A new class of Cyclophostin and Cyclipostins (CyC) analogs have been investigated against Mycobacterium tuberculosis H37Rv (M. tb) grown either in broth medium or inside macrophages. Our compounds displayed a diversity of action by acting either on extracellular M. tb bacterial growth only, or both intracellularly on infected macrophages as well as extracellularly on bacterial growth with very low toxicity towards host macrophages. Among the eight potential CyCs identified, CyC17 exhibited the best extracellular antitubercular activity (MIC50 = 500 nM). This compound was selected and further used in a competitive labelling/enrichment assay against the activity-based probe Desthiobiotin-FP in order to identify its putative target(s). This approach, combined with mass spectrometry, identified 23 potential candidates, most of them being serine or cysteine enzymes involved in M. tb lipid metabolism and/or in cell wall biosynthesis. Among them, Ag85A, CaeA and HsaD, have previously been reported as essential for in vitro growth of M. tb and/or survival and persistence in macrophages. Overall, our findings support the assumption that CyC17 may thus represent a novel class of multi-target inhibitor leading to the arrest of M. tb growth through a cumulative inhibition of a large number of Ser- and Cys-containing enzymes participating in important physiological processes.


Antimicrobial Agents and Chemotherapy | 2017

Efflux Attenuates the Antibacterial Activity of Q203 in Mycobacterium tuberculosis

Jichan Jang; Ryangyeo Kim; Minjeong Woo; Jinsun Jeong; Da Eun Park; Guehye Kim; Vincent Delorme

ABSTRACT New and improved treatments for tuberculosis (TB) are urgently needed. Recently, it has been demonstrated that verapamil, an efflux inhibitor, can reduce bacterial drug tolerance caused by efflux pump activity when administered in combination with available antituberculosis agents. The aim of this study was to evaluate the effectiveness of verapamil in combination with the antituberculosis drug candidate Q203, which has recently been developed and is currently under clinical trials as a potential antituberculosis agent. We evaluated changes in Q203 activity in the presence and absence of verapamil in vitro using the resazurin microplate assay and ex vivo using a microscopy-based phenotypic assay for the quantification of intracellular replicating mycobacteria. Verapamil increased the potency of Q203 against Mycobacterium tuberculosis both in vitro and ex vivo, indicating that efflux pumps are associated with the activity of Q203. Other efflux pump inhibitors also displayed an increase in Q203 potency, strengthening this hypothesis. Therefore, the combination of verapamil and Q203 may be a promising combinatorial strategy for anti-TB treatment to accelerate the elimination of M. tuberculosis.

Collaboration


Dive into the Vincent Delorme's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raffaella Iantomasi

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alain Baulard

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge