Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vincent J. Colandrea is active.

Publication


Featured researches published by Vincent J. Colandrea.


Expert Opinion on Therapeutic Patents | 2010

Prolyl hydroxylase domain-containing protein inhibitors as stabilizers of hypoxia-inducible factor: small molecule-based therapeutics for anemia.

Lin Yan; Vincent J. Colandrea; Jeffrey J. Hale

Importance of the field: Anemia caused by chronic kidney disease and other chronic diseases or conditions can be managed by the treatment of biologic-based erythropoiesis stimulating agents (ESAs). Although these ESAs are successful in treating these anemic conditions, a small molecule-based anti-anemia medicine can potentially revolutionize the treatment of anemia by bringing convenience to patients and being cost effective. Prolyl hydroxylase domain-containing protein (PHD) inhibitors may provide an opportunity for the development of small molecule anti-anemia medicines. Areas covered in this review: This review covers efforts to target PHD enzymes for stabilization of hypoxia-inducible factor (HIF)-α subunits under normal oxygen levels as an attractive strategy to upregulate the expression of erythropoietin and genes involved in iron metabolism for the treatment of anemia. What the reader will gain: The reader will gain a brief summary of recent advances in HIF and PHD biology and a review of patents/patent applications on the subject of PHD inhibitors as HIF stabilizers for the treatment of anemia. Take home message: Several classes of PHD enzyme inhibitors have been disclosed and several are currently in clinical trials for the development of small molecule-based therapeutics for the treatment of anemia.


Tetrahedron Letters | 2000

Synthesis and regioselective alkylation of 1,6- and 1,7-naphthyridines

Vincent J. Colandrea; Elizabeth M. Naylor

Abstract A regioselective alkylation of naphthyridines 4a–d, through the action of ethylchloroformate and benzylstannane 5, afforded the benzyl substituted dihydronaphthyridines 3a–d. These key intermediates 3a–d were transformed into the desired targets 2a–d in seven steps.


Bioorganic & Medicinal Chemistry Letters | 1999

Human β3 andrenergic receptor agonists containing imidazolidinone and imidazolone benzenesulfonamides

Elizabeth M. Naylor; Emma R. Parmee; Vincent J. Colandrea; Leroy Perkins; Linda Brockunier; Mari R. Candelore; Margaret A. Cascieri; Lawrence F. Colwell; Liping Deng; William P. Feeney; Michael J. Forrest; Gary J. Hom; D. Euan MacIntyre; Catherine D. Strader; Laurie Tota; Pei-Ran Wang; Matthew J. Wyvratt; Michael H. Fisher; Ann E. Weber

The cyclopentylpropylimidazolidinone L-766,892 is a potent beta3 AR agonist (EC50 5.7 nM, 64% activation) with 420- and 130-fold selectivity over binding to the beta1 and beta2 ARs, respectively. In anesthetized rhesus monkeys, L-766,892 elicited dose-dependent hyperglycerolemia (ED50 0.1 mg/kg) with minimal effects on heart rate.


Bioorganic & Medicinal Chemistry Letters | 1998

3-pyridylethanolamines: Potent and selective human β3 adrenergic receptor agonists

Elizabeth M. Naylor; Vincent J. Colandrea; Mari R. Candelore; Margaret A. Cascieri; Lawrence F. Colwell; Liping Deng; William P. Feeney; Michael J. Forrest; Gary J. Hom; D. Euan MacIntyre; Catherine D. Strader; Laurie Tota; Pei-Ran Wang; Matthew J. Wyvratt; Michael H. Fisher; Ann E. Weber

The 3-pyridylethanolamine L-757,793 is a potent beta 3 AR agonist (EC50 6.3 nM, 70% activation) with 1,300- and 500-fold selectivity over binding to the beta 1 and beta 2 ARs, respectively. L-757,793 stimulated lipolysis in rhesus monkeys (ED50 0.2 mg/kg) with a maximum response equivalent to that elicited by isoproterenol.


Bioorganic & Medicinal Chemistry Letters | 1999

Human β3 adrenergic receptor agonists containing cyclic ureidobenzenesulfonamides

Emma R. Parmee; Elizabeth M. Naylor; Leroy Perkins; Vincent J. Colandrea; Hyun O. Ok; Mari R. Candelore; Margaret A. Cascieri; Liping Deng; William P. Feeney; Michael J. Forrest; Gary J. Hom; D. Euan MacIntyre; Randall R. Miller; Ralph A. Stearns; Catherine D. Strader; Laurie Tota; Matthew J. Wyvratt; Michael H. Fisher; Ann E. Weber

Human beta3 adrenergic receptor agonists containing 5-membered ring ureas were shown to be potent partial agonists with excellent selectivity over beta1 and beta2 binding. L-760,087 (4a) and L-764,646 (5a) (beta3 EC50 = 18 and 14 nM, respectively) stimulate lipolysis in rhesus monkeys (ED50 = 0.2 and 0.1 mg/kg, respectively) with minimal effects on heart rate. Oral absorption in dogs is improved over other urea analogs.


Journal of Medicinal Chemistry | 2012

1,3,8-Triazaspiro[4.5]decane-2,4-diones as efficacious pan-inhibitors of hypoxia-inducible factor prolyl hydroxylase 1-3 (HIF PHD1-3) for the treatment of anemia.

Petr Vachal; Shouwu Miao; Joan M. Pierce; Deodial Guiadeen; Vincent J. Colandrea; Matthew J. Wyvratt; Scott P. Salowe; Lisa M. Sonatore; James A. Milligan; Richard Hajdu; Anantha Gollapudi; Carol Ann Keohane; Russell B. Lingham; Suzanne M. Mandala; Julie A. DeMartino; Xinchun Tong; Michael Wolff; Dietrich Steinhuebel; Gerard R. Kieczykowski; Fred J. Fleitz; Kevin T. Chapman; John Athanasopoulos; Gregory C. Adam; Can D. Akyuz; Dhirendra K. Jena; Jeffrey W. Lusen; Juncai Meng; Benjamin D. Stein; Lei Xia; Edward C. Sherer

The discovery of 1,3,8-triazaspiro[4.5]decane-2,4-diones (spirohydantoins) as a structural class of pan-inhibitors of the prolyl hydroxylase (PHD) family of enzymes for the treatment of anemia is described. The initial hit class, spirooxindoles, was identified through affinity selection mass spectrometry (AS-MS) and optimized for PHD2 inhibition and optimal PK/PD profile (short-acting PHDi inhibitors). 1,3,8-Triazaspiro[4.5]decane-2,4-diones (spirohydantoins) were optimized as an advanced lead class derived from the original spiroindole hit. A new set of general conditions for C-N coupling, developed using a high-throughput experimentation (HTE) technique, enabled a full SAR analysis of the spirohydantoins. This rapid and directed SAR exploration has resulted in the first reported examples of hydantoin derivatives with good PK in preclinical species. Potassium channel off-target activity (hERG) was successfully eliminated through the systematic introduction of acidic functionality to the molecular structure. Undesired upregulation of alanine aminotransferese (ALT) liver enzymes was mitigated and a robust on-/off-target margin was achieved. Spirohydantoins represent a class of highly efficacious, short-acting PHD1-3 inhibitors causing a robust erythropoietin (EPO) upregulation in vivo in multiple preclinical species. This profile deems spirohydantoins as attractive short-acting PHDi inhibitors with the potential for treatment of anemia.


Bioorganic & Medicinal Chemistry Letters | 2000

Synthesis and SAR of benzyl and phenoxymethylene oxadiazole benzenesulfonamides as selective β3 adrenergic receptor agonist antiobesity agents

Tesfaye Biftu; Dennis Feng; Gui-Bai Liang; Howard C. H. Kuo; Xiaoxia Qian; Elizabeth M. Naylor; Vincent J. Colandrea; Mari R. Candelore; Margaret A. Cascieri; Lawrence F. Colwell; Michael J. Forrest; Gary J. Hom; D. Euan MacIntyre; Ralph A. Stearns; Catherine D. Strader; Matthew J. Wyvratt; Michael H. Fisher; Ann E. Weber

Benzyl and phenoxymethylene substituted oxadiazoles are potent and orally bioavailable beta3 adrenergic receptor (AR) agonists. The 4-trifluormethoxy substituted 5-benzyl oxadiazole 5f has an EC50 of 8 nM in the beta3 AR agonist assay with 100-fold selectivity over beta1 and beta2 AR binding inhibition activity. Its oral bioavailability in dogs is 30 +/- 4%, with a half-life of 3.8 +/- 0.4 h. In the anesthetized rhesus, 5f evoked a dose-dependent glycerolemia (ED50Gly = 0.15 mg/kg). Under these conditions a heart rate increase of 15% was observed at a dose level of 10 mg/kg.


ACS Medicinal Chemistry Letters | 2016

Discovery of MK-8831, A Novel Spiro-Proline Macrocycle as a Pan-Genotypic HCV-NS3/4a Protease Inhibitor.

Santhosh Francis Neelamkavil; Sony Agrawal; Thomas Bara; Chad E. Bennett; Sathesh Bhat; Dipshikha Biswas; Linda Brockunier; Nicole Buist; Duane Burnette; Mark Cartwright; Samuel Chackalamannil; Robert Chase; Mariappan V. Chelliah; Austin Chen; Martin C. Clasby; Vincent J. Colandrea; Ian W. Davies; Keith Eagen; Zhuyan Guo; Yongxin Han; John A. Howe; Charles Lee Jayne; Hubert Josien; Stacia Kargman; Karen Marcantonio; Shouwu Miao; Randy R. Miller; Andrew Nolting; Patrick A. Pinto; Murali Rajagopalan

We have been focused on identifying a structurally different next generation inhibitor to MK-5172 (our Ns3/4a protease inhibitor currently under regulatory review), which would achieve superior pangenotypic activity with acceptable safety and pharmacokinetic profile. These efforts have led to the discovery of a novel class of HCV NS3/4a protease inhibitors containing a unique spirocyclic-proline structural motif. The design strategy involved a molecular-modeling based approach, and the optimization efforts on the series to obtain pan-genotypic coverage with good exposures on oral dosing. One of the key elements in this effort was the spirocyclization of the P2 quinoline group, which rigidified and constrained the binding conformation to provide a novel core. A second focus of the team was also to improve the activity against genotype 3a and the key mutant variants of genotype 1b. The rational application of structural chemistry with molecular modeling guided the design and optimization of the structure-activity relationships have resulted in the identification of the clinical candidate MK-8831 with excellent pan-genotypic activity and safety profile.


Bioorganic & Medicinal Chemistry Letters | 2009

Synthesis and evaluation of N-[(1S,2S)-3-(4-chlorophenyl)-2-(3-cyanophenyl)-1-methylpropyl]-2-methyl-2-aminopropanamide as human cannabinoid-1 receptor (CB1R) inverse agonists

Wu Du; James P. Jewell; Linus S. Lin; Vincent J. Colandrea; Jing C. Xiao; Julie Lao; Chun-Pyn Shen; Thomas J. Bateman; Vijay Bhasker G. Reddy; Sookhee Ha; Shrenik K. Shah; Tung M. Fong; Jeffrey J. Hale; William K. Hagmann

Obesity is a chronic medical condition that is affecting large population throughout the world. CB1 as a target for treatment of obesity has been under intensive studies. Taranabant was discovered and then developed by Merck as the 1st generation CB1R inverse agonist. Reported here is part of our effort on the 2nd generation of CB1R inverse agonist from the acyclic amide scaffold. We replaced the oxygen linker in taranabant with nitrogen and prepared a series of amino heterocyclic analogs through a divergent synthesis. Although in general, the amine linker gave reduced binding affinity, potent and selective CB1R inverse agonist was identified from the amino heterocycle series. Molecular modeling was applied to study the binding of the amino heterocycle series at CB1 binding site. The in vitro metabolism of representative members was studied and only trace glucuronidation was found. Thus, it suggests that the right hand side of the molecule may not be the appropriate site for glucuronidation.


ACS Medicinal Chemistry Letters | 2016

Discovery of Novel Indoline Cholesterol Ester Transfer Protein Inhibitors (CETP) through a Structure-Guided Approach

Jonathan E. Wilson; Ravi Kurukulasuriya; Mikhail Reibarkh; Maud Reiter; Aaron Zwicker; Kake Zhao; Fengqi Zhang; Rajan Anand; Vincent J. Colandrea; Anne-Marie Cumiskey; Alejandro Crespo; Ruth A. Duffy; Beth Ann Murphy; Kaushik Mitra; Douglas G. Johns; Joseph L. Duffy; Petr Vachal

Using the collective body of known (CETP) inhibitors as inspiration for design, a structurally novel series of tetrahydroquinoxaline CETP inhibitors were discovered. An exemplar from this series, compound 5, displayed potent in vitro CETP inhibition and was efficacious in a transgenic cynomologus-CETP mouse HDL PD (pharmacodynamic) assay. However, an undesirable metabolic profile and chemical instability hampered further development of the series. A three-dimensional structure of tetrahydroquinoxaline inhibitor 6 was proposed from (1)H NMR structural studies, and this model was then used in silico for the design of a new class of compounds based upon an indoline scaffold. This work resulted in the discovery of compound 7, which displayed potent in vitro CETP inhibition, a favorable PK-PD profile relative to tetrahydroquinoxaline 5, and dose-dependent efficacy in the transgenic cynomologus-CETP mouse HDL PD assay.

Collaboration


Dive into the Vincent J. Colandrea's collaboration.

Researchain Logo
Decentralizing Knowledge