Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vincent J. Lynch is active.

Publication


Featured researches published by Vincent J. Lynch.


Theory in Biosciences | 2012

Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples

Günter P. Wagner; Koryu Kin; Vincent J. Lynch

Measures of RNA abundance are important for many areas of biology and often obtained from high-throughput RNA sequencing methods such as Illumina sequence data. These measures need to be normalized to remove technical biases inherent in the sequencing approach, most notably the length of the RNA species and the sequencing depth of a sample. These biases are corrected in the widely used reads per kilobase per million reads (RPKM) measure. Here, we argue that the intended meaning of RPKM is a measure of relative molar RNA concentration (rmc) and show that for each set of transcripts the average rmc is a constant, namely the inverse of the number of transcripts mapped. Further, we show that RPKM does not respect this invariance property and thus cannot be an accurate measure of rmc. We propose a slight modification of RPKM that eliminates this inconsistency and call it TPM for transcripts per million. TPM respects the average invariance and eliminates statistical biases inherent in the RPKM measure.


PLOS Genetics | 2013

Transposable Elements Are Major Contributors to the Origin, Diversification, and Regulation of Vertebrate Long Noncoding RNAs

Aurélie Kapusta; Zev Kronenberg; Vincent J. Lynch; Xiaoyu Zhuo; LeeAnn Ramsay; Guillaume Bourque; Mark Yandell; Cédric Feschotte

Advances in vertebrate genomics have uncovered thousands of loci encoding long noncoding RNAs (lncRNAs). While progress has been made in elucidating the regulatory functions of lncRNAs, little is known about their origins and evolution. Here we explore the contribution of transposable elements (TEs) to the makeup and regulation of lncRNAs in human, mouse, and zebrafish. Surprisingly, TEs occur in more than two thirds of mature lncRNA transcripts and account for a substantial portion of total lncRNA sequence (∼30% in human), whereas they seldom occur in protein-coding transcripts. While TEs contribute less to lncRNA exons than expected, several TE families are strongly enriched in lncRNAs. There is also substantial interspecific variation in the coverage and types of TEs embedded in lncRNAs, partially reflecting differences in the TE landscapes of the genomes surveyed. In human, TE sequences in lncRNAs evolve under greater evolutionary constraint than their non–TE sequences, than their intronic TEs, or than random DNA. Consistent with functional constraint, we found that TEs contribute signals essential for the biogenesis of many lncRNAs, including ∼30,000 unique sites for transcription initiation, splicing, or polyadenylation in human. In addition, we identified ∼35,000 TEs marked as open chromatin located within 10 kb upstream of lncRNA genes. The density of these marks in one cell type correlate with elevated expression of the downstream lncRNA in the same cell type, suggesting that these TEs contribute to cis-regulation. These global trends are recapitulated in several lncRNAs with established functions. Finally a subset of TEs embedded in lncRNAs are subject to RNA editing and predicted to form secondary structures likely important for function. In conclusion, TEs are nearly ubiquitous in lncRNAs and have played an important role in the lineage-specific diversification of vertebrate lncRNA repertoires.


Nature Genetics | 2011

Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals

Vincent J. Lynch; Robert D Leclerc; Gemma May; Günter P. Wagner

A fundamental challenge in biology is explaining the origin of novel phenotypic characters such as new cell types; the molecular mechanisms that give rise to novelties are unclear. We explored the gene regulatory landscape of mammalian endometrial cells using comparative RNA-Seq and found that 1,532 genes were recruited into endometrial expression in placental mammals, indicating that the evolution of pregnancy was associated with a large-scale rewiring of the gene regulatory network. About 13% of recruited genes are within 200 kb of a Eutherian-specific transposable element (MER20). These transposons have the epigenetic signatures of enhancers, insulators and repressors, directly bind transcription factors essential for pregnancy and coordinately regulate gene expression in response to progesterone and cAMP. We conclude that the transposable element, MER20, contributed to the origin of a novel gene regulatory network dedicated to pregnancy in placental mammals, particularly by recruiting the cAMP signaling pathway into endometrial stromal cells.


Science | 1970

[Starvation in human pregnancy: hypoglycemia, hypoinsulinemia, and hyperketonemia].

Philip Felig; Vincent J. Lynch

In women fasted during the second trimester of pregnancy, concentrations of glucose and insulin in the plasma fell to a greater extent and ketone acid concentrations in the blood rose more rapidly than in nonpregnant controls. Nitrogen excretion in the urine, particularly ammonia, was increased in the pregnant group. Continuous glucose utilization by the conceptus may exaggerate and accelerate the metabolic consequences of starvation.


BMC Evolutionary Biology | 2007

Inventing an arsenal: adaptive evolution and neofunctionalization of snake venom phospholipase A2 genes

Vincent J. Lynch

BackgroundGene duplication followed by functional divergence has long been hypothesized to be the main source of molecular novelty. Convincing examples of neofunctionalization, however, remain rare. Snake venom phospholipase A2 genes are members of large multigene families with many diverse functions, thus they are excellent models to study the emergence of novel functions after gene duplications.ResultsHere, I show that positive Darwinian selection and neofunctionalization is common in snake venom phospholipase A2 genes. The pattern of gene duplication and positive selection indicates that adaptive molecular evolution occurs immediately after duplication events as novel functions emerge and continues as gene families diversify and are refined. Surprisingly, adaptive evolution of group-I phospholipases in elapids is also associated with speciation events, suggesting adaptation of the phospholipase arsenal to novel prey species after niche shifts. Mapping the location of sites under positive selection onto the crystal structure of phospholipase A2 identified regions evolving under diversifying selection are located on the molecular surface and are likely protein-protein interactions sites essential for toxin functions.ConclusionThese data show that increases in genomic complexity (through gene duplications) can lead to phenotypic complexity (venom composition) and that positive Darwinian selection is a common evolutionary force in snake venoms. Finally, regions identified under selection on the surface of phospholipase A2 enzymes are potential candidate sites for structure based antivenin design.


Evolution | 2008

RESURRECTING THE ROLE OF TRANSCRIPTION FACTOR CHANGE IN DEVELOPMENTAL EVOLUTION

Vincent J. Lynch; Günter P. Wagner

Abstract A long-standing question in evolutionary and developmental biology concerns the relative contribution of cis-regulatory and protein changes to developmental evolution. Central to this argument is which mutations generate evolutionarily relevant phenotypic variation? A review of the growing body of evolutionary and developmental literature supports the notion that many developmentally relevant differences occur in the cis-regulatory regions of protein-coding genes, generally to the exclusion of changes in the protein-coding region of genes. However, accumulating experimental evidence demonstrates that many of the arguments against a role for proteins in the evolution of gene regulation, and the developmental evolution in general, are no longer supported and there is an increasing number of cases in which transcription factor protein changes have been demonstrated in evolution. Here, we review the evidence that cis-regulatory evolution is an important driver of phenotypic evolution and provide examples of protein-mediated developmental evolution. Finally, we present an argument that the evolution of proteins may play a more substantial, but thus far underestimated, role in developmental evolution.


Trends in Ecology and Evolution | 2008

The gene regulatory logic of transcription factor evolution

Günter P. Wagner; Vincent J. Lynch

A growing debate in evolutionary and developmental biology concerns the relative contribution of cis-regulatory and protein (particularly transcription factor) changes to developmental evolution. Central to this argument are the perceived conservation of transcription factor functions and the modular architecture of cis-regulatory elements. In this paper, we review recent studies on transcription factor proteins that show that transcription factor genes undergo adaptive evolution and evolve novel functions that contribute to the evolution of development. Furthermore, we review experimental work that shows that transcription factor proteins are modular and can evolve with minimal pleiotropic effects. We conclude that changes in the function of proteins are likely directly contributing to developmental evolution.


Cell Reports | 2015

Ancient transposable elements transformed the uterine regulatory landscape and transcriptome during the evolution of mammalian pregnancy

Vincent J. Lynch; Mauris C. Nnamani; Aurélie Kapusta; Kathryn J. Brayer; Silvia Plaza; Erik C. Mazur; Deena Emera; Shehzad Z. Sheikh; Frank Grützner; Stefan Bauersachs; Alexander Graf; Steven L. Young; Jason D. Lieb; Francesco J. DeMayo; Cédric Feschotte; Günter P. Wagner

SUMMARY A major challenge in biology is determining how evolutionarily novel characters originate; however, mechanistic explanations for the origin of new characters are almost completely unknown. The evolution of pregnancy is an excellent system in which to study the origin of novelties because mammals preserve stages in the transition from egg laying to live birth. To determine the molecular bases of this transition, we characterized the pregnant/gravid uterine transcriptome from tetrapods to trace the evolutionary history of uterine gene expression. We show that thousands of genes evolved endometrial expression during the origins of mammalian pregnancy, including genes that mediate maternal-fetal communication and immunotolerance. Furthermore, thousands of cis-regulatory elements that mediate decidualization and cell-type identity in decidualized stromal cells are derived from ancient mammalian transposable elements (TEs). Our results indicate that one of the defining mammalian novelties evolved from DNA sequences derived from ancient mammalian TEs coopted into hormone-responsive regulatory elements distributed throughout the genome.


Journal of Clinical Investigation | 1972

Amino acid metabolism during starvation in human pregnancy

Philip Felig; Young Jin Kim; Vincent J. Lynch; Rosa Hendler

To evaluate the factors regulating gluconeogenesis in pregnancy, plasma amino acid levels were determined during the course of an 84-90 hr fast in physically healthy women studied during wk 16-22 of gestation (before undergoing therapeutic abortion), and in nonpregnant controls. The effect of pregnancy on the glycemic response to exogenous alanine administration during starvation was also investigated. In the nonpregnant group fasting resulted in a 2- to 3-fold increase in the levels of plasma valine, leucine, isoleucine, and alpha-aminobutyrate, while the concentration of alanine and glycine fell. In the pregnant group, the levels of most amino acids were significantly reduced in the postabsorptive state. With starvation, the plasma concentration of alanine fell more rapidly in the pregnant group and was significantly below that of the nonpregnant subjects for the first 60 hr of the fast. In contrast, a significant elevation in plasma glycine, serine, and threonine was observed in the pregnant group after 84 hr of fasting, whereas similar increments were not demonstrable until after 10 days of fasting in previously studied nonpregnant obese subjects. Paralleling the changes in maternal plasma, amniotic fluid levels of valine, leucine, and isoleucine increased while that of alanine fell during the fast. Although the plasma glucose concentration was lower in the pregnant group at termination of the fast, intravenous alanine administration (0.15 g/kg), resulted in a prompt, comparable increase (20-25 mg/100 ml) in plasma glucose in both groups of subjects. It is concluded that (a) pregnancy accelerates and exaggerates the hypoalaninemic and hyperglycinemic effects of starvation; (b) lack of key endogenous substrate rather than altered intrahepatic processes may limit hepatic gluconeogenesis in pregnancy and contribute to gestational hypoglycemia; (c) maternal caloric deprivation profoundly alters the levels of amino acids in amniotic fluid.


Nature | 2011

Regulatory evolution through divergence of a phosphoswitch in the transcription factor CEBPB.

Vincent J. Lynch; Gemma May; Günter P. Wagner

There is an emerging consensus that gene regulation evolves through changes in cis-regulatory elements and transcription factors. Although it is clear how nucleotide substitutions in cis-regulatory elements affect gene expression, it is not clear how amino-acid substitutions in transcription factors influence gene regulation. Here we show that amino-acid changes in the transcription factor CCAAT/enhancer binding protein-β (CEBPB, also known as C/EBP-β) in the stem-lineage of placental mammals changed the way it responds to cyclic AMP/protein kinase A (cAMP/PKA) signalling. By functionally analysing resurrected ancestral proteins, we identify three amino-acid substitutions in an internal regulatory domain of CEBPB that are responsible for the novel function. These amino-acid substitutions reorganize the location of key phosphorylation sites, introducing a new site and removing two ancestral sites, reversing the response of CEBPB to GSK-3β-mediated phosphorylation from repression to activation. We conclude that changing the response of transcription factors to signalling pathways can be an important mechanism of gene regulatory evolution.

Collaboration


Dive into the Vincent J. Lynch's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge