Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vincent L. St. Louis is active.

Publication


Featured researches published by Vincent L. St. Louis.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Whole-ecosystem study shows rapid fish-mercury response to changes in mercury deposition

Reed Harris; John W. M. Rudd; Marc Amyot; Christopher L. Babiarz; Ken G. Beaty; Paul J. Blanchfield; R. A. Bodaly; Brian A. Branfireun; Cynthia C. Gilmour; Jennifer A. Graydon; Andrew Heyes; Holger Hintelmann; James P. Hurley; Carol A. Kelly; David P. Krabbenhoft; S. E. Lindberg; Robert P. Mason; Michael J. Paterson; Cheryl L. Podemski; Art Robinson; Ken A. Sandilands; George R. Southworth; Vincent L. St. Louis; Michael T. Tate

Methylmercury contamination of fisheries from centuries of industrial atmospheric emissions negatively impacts humans and wildlife worldwide. The response of fish methylmercury concentrations to changes in mercury deposition has been difficult to establish because sediments/soils contain large pools of historical contamination, and many factors in addition to deposition affect fish mercury. To test directly the response of fish contamination to changing mercury deposition, we conducted a whole-ecosystem experiment, increasing the mercury load to a lake and its watershed by the addition of enriched stable mercury isotopes. The isotopes allowed us to distinguish between experimentally applied mercury and mercury already present in the ecosystem and to examine bioaccumulation of mercury deposited to different parts of the watershed. Fish methylmercury concentrations responded rapidly to changes in mercury deposition over the first 3 years of study. Essentially all of the increase in fish methylmercury concentrations came from mercury deposited directly to the lake surface. In contrast, <1% of the mercury isotope deposited to the watershed was exported to the lake. Steady state was not reached within 3 years. Lake mercury isotope concentrations were still rising in lake biota, and watershed mercury isotope exports to the lake were increasing slowly. Therefore, we predict that mercury emissions reductions will yield rapid (years) reductions in fish methylmercury concentrations and will yield concomitant reductions in risk. However, a full response will be delayed by the gradual export of mercury stored in watersheds. The rate of response will vary among lakes depending on the relative surface areas of water and watershed.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Forest fire increases mercury accumulation by fishes via food web restructuring and increased mercury inputs

Erin N. Kelly; David W. Schindler; Vincent L. St. Louis; David B. Donald; Katherine E. Vladicka

Recent findings indicate that fishes from lakes in partially burned catchments contain greater mercury (Hg) concentrations than fishes from reference catchments. Increased methyl Hg (MeHg) concentrations in fishes can result in serious health problems for consumers. Here we show that a forest fire caused a 5-fold increase in whole-body Hg accumulation by rainbow trout (Oncorhynchus mykiss) and smaller Hg increases in muscle of several fish species in a mountain lake. The enhanced Hg accumulation was caused primarily by increased nutrient concentrations in the lake, which enhanced productivity and restructured the food web through increased piscivory and consumption of Mysis. This restructuring resulted in increases to the trophic positions and Hg concentrations of fishes. Forest fire also caused a large short-term release of total Hg (THg) and MeHg to streams and the lake. This release initiated a small pulse of MeHg in invertebrates that contributed to enhanced Hg accumulation by fishes. Climate change and prescribed burning to compensate for past fire suppression are predicted to increase future forest fire occurrence in North America, and increased Hg accumulation by fishes may be an unexpected consequence.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions

Yanxu Zhang; Daniel J. Jacob; Hannah M. Horowitz; Long Chen; Helen Marie Amos; David P. Krabbenhoft; F. Slemr; Vincent L. St. Louis; Elynor M Sunderland

Significance Anthropogenic mercury poses risks to humans and ecosystems when converted to methylmercury. A longstanding conundrum has been the apparent disconnect between increasing global emissions trends and measured declines in atmospheric mercury in North America and Europe. This work shows that locally deposited mercury close to coal-fired utilities has declined more rapidly than previously anticipated because of shifts in speciation from air pollution control technology targeted at SO2 and NOx. Reduced emissions from utilities over the past two decades and the phase-out of mercury in many commercial products has led to lower global anthropogenic emissions and associated deposition to ecosystems. This implies that prior policy assessments underestimated the regional benefits of declines in mercury emissions from coal-fired utilities. Observations of elemental mercury (Hg0) at sites in North America and Europe show large decreases (∼1–2% y−1) from 1990 to present. Observations in background northern hemisphere air, including Mauna Loa Observatory (Hawaii) and CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) aircraft flights, show weaker decreases (<1% y−1). These decreases are inconsistent with current global emission inventories indicating flat or increasing emissions over that period. However, the inventories have three major flaws: (i) they do not account for the decline in atmospheric release of Hg from commercial products; (ii) they are biased in their estimate of artisanal and small-scale gold mining emissions; and (iii) they do not properly account for the change in Hg0/HgII speciation of emissions from coal-fired utilities after implementation of emission controls targeted at SO2 and NOx. We construct an improved global emission inventory for the period 1990 to 2010 accounting for the above factors and find a 20% decrease in total Hg emissions and a 30% decrease in anthropogenic Hg0 emissions, with much larger decreases in North America and Europe offsetting the effect of increasing emissions in Asia. Implementation of our inventory in a global 3D atmospheric Hg simulation [GEOS-Chem (Goddard Earth Observing System-Chemistry)] coupled to land and ocean reservoirs reproduces the observed large-scale trends in atmospheric Hg0 concentrations and in HgII wet deposition. The large trends observed in North America and Europe reflect the phase-out of Hg from commercial products as well as the cobenefit from SO2 and NOx emission controls on coal-fired utilities.


Environmental Research | 2012

Mercury in Arctic marine ecosystems: Sources, pathways and exposure

Jane L. Kirk; Igor Lehnherr; Maria Andersson; Birgit M. Braune; Laurie Chan; Ashu Dastoor; Dorothy Durnford; Amber Gleason; Lisa L. Loseto; Alexandra Steffen; Vincent L. St. Louis

Mercury in the Arctic is an important environmental and human health issue. The reliance of Northern Peoples on traditional foods, such as marine mammals, for subsistence means that they are particularly at risk from mercury exposure. The cycling of mercury in Arctic marine systems is reviewed here, with emphasis placed on the key sources, pathways and processes which regulate mercury levels in marine food webs and ultimately the exposure of human populations to this contaminant. While many knowledge gaps exist limiting our ability to make strong conclusions, it appears that the long-range transport of mercury from Asian emissions is an important source of atmospheric Hg to the Arctic and that mercury methylation resulting in monomethylmercury production (an organic form of mercury which is both toxic and bioaccumulated) in Arctic marine waters is the principal source of mercury incorporated into food webs. Mercury concentrations in biological organisms have increased since the onset of the industrial age and are controlled by a combination of abiotic factors (e.g., monomethylmercury supply), food web dynamics and structure, and animal behavior (e.g., habitat selection and feeding behavior). Finally, although some Northern Peoples have high mercury concentrations of mercury in their blood and hair, harvesting and consuming traditional foods have many nutritional, social, cultural and physical health benefits which must be considered in risk management and communication.


Water Air and Soil Pollution | 1995

Wet deposition of methyl mercury in northwestern Ontario compared to other geographic locations

Vincent L. St. Louis; John W. M. Rudd; Carol A. Kelly; L. A. Barrie

Concentrations of methyl mercury (MeHg) and total mercury (THg) in precipitation were measured at the Experimental Lakes Area (ELA), a remote field station in northwestern Ontario. We found that precipitation was a source of both MeHg and THg to boreal ecosystems, but at lower rates than in industrialized regions of North America and Scandinavia. MeHg concentrations in precipitation ranged from 0.010 to 0.179 ng L1 and were highest when events originated west of the ELA. THg concentrations in precipitation ranged from 0.95 to 9.31 ng L1 and were highest when the events came from the southeast. There was no relationship between THg and MeHg over time in precipitation. Inputs of both MeHg and THg to ecosystems were highest during summer months.


Ecosystems | 2005

Carbon Dioxide and Methane Production in Small Reservoirs Flooding Upland Boreal Forest

Cory J. D. Matthews; Elizabeth M. Joyce; Vincent L. St. Louis; Sherry L. Schiff; Jason J. Venkiteswaran; Britt D. Hall; R. A. Bodaly; Kenneth G. Beaty

The FLooded Uplands Dynamics EXperiment (FLUDEX) was designed to assess the impact of reservoir creation on carbon cycling in boreal forests by (a) determining whether production of the greenhouse gases (GHG) carbon dioxide (CO2) and methane (CH4) in reservoirs is related to the amount of organic carbon (OC) stored in the flooded landscape, (b) examining temporal trends in GHG production during initial stages of flooding, and (c) considering the net difference between GHG fluxes before and after flooding to estimate the true effect of reservoir creation on atmospheric GHG levels. Three forested sites that varied in the amount of OC stored in soils and vegetation (30,870–45,860 kg C ha–1) were experimentally flooded from June to September in 1999–2001. Throughout the study, net CO2 and CH4 production in all three reservoirs was not related to overall site OC storage. During the 1st flooding season, net CO2 production in the three reservoirs was 703–797 kg C ha–1, but it decreased during the 2nd and 3rd flooding seasons to between 408 and 479 kg C ha–1. However, CH4 production increased in all reservoirs with each flooding season, from about 3.2–4.6 kg C ha–1 in 1999 to 12.8–24.9 kg C ha–1 in 2000 and 29.7–35.2 kg C ha–1 in 2001. Over the long term, effects of boreal reservoir creation on atmospheric GHG levels may be largely due to net changes in CH4 cycling between the undisturbed and flooded ecosystems.


Environmental Science & Technology | 2011

Source elucidation of perfluorinated carboxylic acids in remote alpine lake sediment cores.

Jonathan P. Benskin; Vanessa Phillips; Vincent L. St. Louis; Jonathan W. Martin

Atmospheric deposition of perfluorinated carboxylic acids (PFCAs) in remote regions might arise from transport and degradation of precursors (e.g., perfluorooctanesulfonyl fluoride (PFOSF)-based products or fluorotelomer alcohols (FTOHs)) or direct transport (e.g., PFCAs in the vapor phase or on particles). To probe the dominant atmospheric source of PFCAs, historical trends in environmental FTOH, PFOSF, and direct perfluorooctanoate (PFOA) emissions were compared to the flux of PFCAs (sum of C7-C13 perfluoroalkyl chain lengths) and PFCA isomer signatures in dated sediment cores from two remote alpine lakes in the Canadian Rocky Mountains. Contributions from PFOSF-based substances and direct transport of PFOA were ruled to be minimal because no branched isomers were detected in either core and temporal trends for direct emission of PFOA did not match the flux measurements. PFCA flux to Lake Opabin sediment agreed well with reported FTOH emissions, including a peak in mid-2003 and subsequent decline. In Lake Oesa, agreement between PFCA flux and FTOH emissions was also good up to 2004, but a subsequent decline was only detected for some PFCA congeners through 2008, while others continued to increase. Overall, both the isomer profiles and the temporal trend data suggest that FTOH oxidation is the dominant atmospheric source of PFCAs to these high alpine lakes. The efficacy of recent industry phase-out initiatives was difficult to assess due to the divergent temporal trends in samples after 2003; thus, continued monitoring is suggested at remote sites such as these.


Environmental Science & Technology | 2013

Mercury Export to the Arctic Ocean from the Mackenzie River, Canada

Craig A. Emmerton; Jennifer A. Graydon; Jolie A. L. Gareis; Vincent L. St. Louis; Lance F. W. Lesack; Janelle K. A. Banack; Faye Hicks; Jennifer Nafziger

Circumpolar rivers, including the Mackenzie River in Canada, are sources of the contaminant mercury (Hg) to the Arctic Ocean, but few Hg export studies exist for these rivers. During the 2007-2010 freshet and open water seasons, we collected river water upstream and downstream of the Mackenzie River delta to quantify total mercury (THg) and methylmercury (MeHg) concentrations and export. Upstream of the delta, flow-weighted mean concentrations of bulk THg and MeHg were 14.6 ± 6.2 ng L(-1) and 0.081 ± 0.045 ng L(-1), respectively. Only 11-13% and 44-51% of bulk THg and MeHg export was in the dissolved form. Using concentration-discharge relationships, we calculated bulk THg and MeHg export into the delta of 2300-4200 kg yr(-1) and 15-23 kg yr(-1) over the course of the study. Discharge is not presently known in channels exiting the delta, so we assessed differences in river Hg concentrations upstream and downstream of the delta to estimate its influence on Hg export to the ocean. Bulk THg and MeHg concentrations decreased 19% and 11% through the delta, likely because of particle settling and other processes in the floodplain. These results suggest that northern deltas may be important accumulators of river Hg in their floodplains before export to the Arctic Ocean.


Global Biogeochemical Cycles | 2012

The role of terrestrial vegetation in atmospheric Hg deposition: Pools and fluxes of spike and ambient Hg from the METAALICUS experiment

Jennifer A. Graydon; Vincent L. St. Louis; S. E. Lindberg; Ken A. Sandilands; John W. M. Rudd; Carol A. Kelly; Reed Harris; Michael T. Tate; Dave P. Krabbenhoft; Craig A. Emmerton; Hamish Asmath; Murray Richardson

[1] As part of the Mercury Experiment to Assess Atmospheric Loading in Canada and the U.S. (METAALICUS), different stable Hg(II) isotope spikes were applied to the upland and wetland areas of a boreal catchment between 2001 and 2006 to examine retention of newly deposited Hg(II). In the present study, a Geographical Information Systems (GIS)-based approach was used to quantify canopy and ground vegetation pools of experimentally applied upland and wetland spike Hg within the METAALICUS watershed over the terrestrial loading phase of the experiment. A chemical kinetic model was also used to describe the changes in spike Hg concentrations of canopy and ground vegetation over time. An examination of the fate of spike Hg initially present on canopy vegetation using a mass balance approach indicated that the largest percentage flux from the canopy over one year post-spray was emission to the atmosphere (upland: 45%; wetland: 71%), followed by litterfall (upland: 14%; wetland: 10%) and throughfall fluxes (upland: 12%; wetland: 9%) and longer term retention of spike in the forest canopy (11% for both upland and wetland). Average half-lives (t1/2) of spike on deciduous (110 � 30 days) and coniferous (180 � 40 days) canopy and ground vegetation (890 � 620 days) indicated that retention of new atmospheric Hg(II) on terrestrial (especially ground) vegetation delays downward transport of new atmospheric Hg(II) into the soil profile and runoff into lakes.


Environmental Science & Technology | 2012

Methylmercury cycling in High Arctic wetland ponds: sources and sinks.

Igor Lehnherr; Vincent L. St. Louis; Craig A. Emmerton; J. D. Barker; Jane L. Kirk

The sources of methylmercury (MeHg; the toxic form of mercury that is biomagnified through foodwebs) to Arctic freshwater organisms have not been clearly identified. We used a mass balance approach to quantify MeHg production in two wetland ponds in the Lake Hazen region of northern Ellesmere Island, NU, in the Canadian High Arctic and to evaluate the importance of these systems as sources of MeHg to Arctic foodwebs. We show that internal production (1.8-40 ng MeHg m(-2) d(-1)) is a much larger source of MeHg than external inputs from direct atmospheric deposition (0.029-0.051 ng MeHg m(-2) d(-1)), as expected. Furthermore, MeHg cycling in these systems is dominated by Hg(II) methylation and MeHg photodemethylation (2.0-33 ng MeHg m(-2) d(-1)), which is a sink for a large proportion of the MeHg produced by Hg(II) methylation in these ponds. We also show that MeHg production in the two study ponds is comparable to what has previously been measured in numerous more southerly systems known to be important MeHg sources, such as temperate wetlands and lakes, demonstrating that wetland ponds in the High Arctic are important sources of MeHg to local aquatic foodwebs.

Collaboration


Dive into the Vincent L. St. Louis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David P. Krabbenhoft

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

S. E. Lindberg

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge