Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vincent Morinière is active.

Publication


Featured researches published by Vincent Morinière.


Clinical Journal of The American Society of Nephrology | 2010

Spectrum of HNF1B mutations in a large cohort of patients who harbor renal diseases.

Laurence Heidet; Stéphane Decramer; Audrey Pawtowski; Vincent Morinière; Flavio Bandin; Bertrand Knebelmann; Anne-Sophie Lebre; Stanislas Faguer; Vincent Guigonis; Corinne Antignac; Rémi Salomon

BACKGROUND AND OBJECTIVES Hepatocyte nuclear factor 1beta (HNF1beta) is a transcription factor that is critical for the development of kidney and pancreas. In humans, mutations in HNF1B lead to congenital anomalies of the kidney and urinary tract, pancreas atrophy, and maturity-onset diabetes of the young type 5 and genital malformations. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We report HNF1B screening in a cohort of 377 unrelated cases with various kidney phenotypes (hyperechogenic kidneys with size not more than +3 SD, multicystic kidney disease, renal agenesis, renal hypoplasia, cystic dysplasia, or hyperuricemic tubulointerstitial nephropathy not associated with UMOD mutation). RESULTS We found a heterozygous mutation in 75 (19.9%) index cases, consisting of a deletion of the whole gene in 42, deletion of one exon in one, and small mutations in 32. Eighteen mutations were novel. De novo mutations accounted for 66% of deletions and 40% of small mutations. In patients who carried HNF1B mutation and for whom we were able to study prenatal ultrasonography (56 probands), isolated hyperechogenic kidneys with normal or slightly enhanced size were the more frequent (34 of 56) phenotype before birth. Various other prenatal renal phenotypes were associated with HNF1B mutations, at a lesser frequency. Diabetes developed in four probands. Hyperuricemia and hypomagnesemia, although not systematically investigated, were frequently associated. CONCLUSIONS This large series showed that the severity of the renal disease associated with HNF1B mutations was extremely variable (from prenatal renal failure to normal renal function in adulthood) and was not correlated with the genotype.


Human Molecular Genetics | 2009

Uromodulin mutations causing Familial Juvenile Hyperuricaemic Nephropathy lead to protein maturation defects and retention in the endoplasmic reticulum

Siân E. Williams; Anita Reed; Juris Galvanovskis; Corinne Antignac; Timothy H.J. Goodship; Fiona E. Karet; Peter Kotanko; Karl Lhotta; Vincent Morinière; Paul F. Williams; William Wong; Patrik Rorsman; Rajesh V. Thakker

Familial juvenile hyperuricaemic nephropathy (FJHN), an autosomal dominant disorder, is caused by mutations in the UMOD gene, which encodes Uromodulin, a glycosylphosphatidylinositol-anchored protein that is expressed in the thick ascending limb of the loop of Henle and excreted in the urine. Uromodulin contains three epidermal growth factor (EGF)-like domains, a cysteine-rich region which includes a domain of eight cysteines and a zona pellucida (ZP) domain. Over 90% of UMOD mutations are missense, and 62% alter a cysteine residue, implicating a role for protein misfolding in the disease. We investigated 20 northern European FJHN probands for UMOD mutations. Wild-type and mutant Uromodulins were functionally studied by expression in HeLa cells and by the use of western blot analysis and confocal microscopy. Six different UMOD missense mutations (Cys32Trp, Arg185Gly, Asp196Asn, Cys217Trp, Cys223Arg and Gly488Arg) were identified. Patients with UMOD mutations were phenotypically similar to those without UMOD mutations. The mutant Uromodulins had significantly delayed maturation, retention in the endoplasmic reticulum (ER) and reduced expression at the plasma membrane. However, Gly488Arg, which is the only mutation we identified in the ZP domain, was found to be associated with milder in vitro abnormalities and to be the only mutant Uromodulin detected in conditioned medium from transfected cells, indicating that the severity of the mutant phenotypes may depend on their location within the protein. Thus, FJHN-causing Uromodulin mutants are retained in the ER, with impaired intracellular maturation and trafficking, thereby indicating mechanisms whereby Uromodulin mutants may cause the phenotype of FJHN.


Kidney International | 2009

Mutations of NPHP2 and NPHP3 in infantile nephronophthisis

Kalman Tory; Caroline Rousset-Rouvière; Marie-Claire Gubler; Vincent Morinière; Audrey Pawtowski; Céline Becker; Claude Guyot; Sophie Gie; Yaacov Frishberg; Hubert Nivet; Georges Deschênes; Pierre Cochat; Marie-France Gagnadoux; Sophie Saunier; Corinne Antignac; Rémi Salomon

Nephronophthisis is an autosomal recessive chronic tubulointerstitial disease that progresses to end-stage renal disease (ESRD) in about 10% of cases during infancy. Mutations in the INVS (NPHP2) gene were found in a few patients with infantile nephronophthisis. Mutations of NPHP3, known to be associated with adolescent nephronophthisis, were found in two patients with early-onset ESRD. Here we screened 43 families with infantile nephronophthisis (ESRD less than 5 years of age) for NPHP2 and NPHP3 mutations and determined genotype-phenotype correlations. In this cohort there were 16 families with NPHP2 mutations and NPHP3 mutations in seven. Three patients carried only one heterozygous mutation in NPHP3. ESRD arose during the first 2 years of life in 16 of 18 patients with mutations in NPHP2, but in only two patients with mutations in NPHP3. Renal morphology, characterized by hyper-echogenic kidneys on ultrasound and tubular lesions with interstitial fibrosis on histology, was similar in the two patient groups. The kidney sizes were highly diverse and ultrasound-visualized cysts were present in a minority of cases. Extra-renal anomalies were found in 80% of the entire cohort including hepatic involvement (50%), cardiac valve or septal defects (20%) and recurrent bronchial infections (18%). We show that NPHP3 mutations in both infantile and adolescent nephronophthisis point to a common pathophysiological mechanism despite their different clinical presentations.


Clinical Journal of The American Society of Nephrology | 2011

Phenotype and Outcome in Hereditary Tubulointerstitial Nephritis Secondary to UMOD Mutations

Guillaume Bollée; Karin Dahan; Martin Flamant; Vincent Morinière; Audrey Pawtowski; Laurence Heidet; Didier Lacombe; Olivier Devuyst; Yves Pirson; Corinne Antignac; Bertrand Knebelmann

BACKGROUND UMOD mutations cause familial juvenile hyperuricemic nephropathy (FJHN) and medullary cystic kidney disease (MCKD), although these phenotypes are nonspecific. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We reviewed cases of UMOD mutations diagnosed in the genetic laboratories of Necker Hospital (Paris, France) and of Université Catholique de Louvain (Brussels, Belgium). We also analyzed patients with MCKD/FJHN but no UMOD mutation. To determine thresholds for hyperuricemia and uric-acid excretion fraction (UAEF) according to GFR, these parameters were analyzed in 1097 patients with various renal diseases and renal function levels. RESULTS Thirty-seven distinct UMOD mutations were found in 109 patients from 45 families, all in exon 4 or 5 except for three novel mutations in exon 8. Median renal survival was 54 years. The type of mutation had a modest effect on renal survival, and intrafamilial variability was high. Detailed data available in 70 patients showed renal cysts in 24 (34.3%) of nonspecific localization in most patients. Uricemia was >75th percentile in 31 (71.4%) of 42 patients not under dialysis or allopurinol therapy. UAEF (n = 27) was <75th percentile in 70.4%. Among 136 probands with MCKD/FJHN phenotype, UMOD mutation was found in 24 (17.8%). Phenotype was not accurately predictive of UMOD mutation. Six probands had HNF1B mutations. CONCLUSIONS Hyperuricemia disproportionate to renal function represents the hallmark of renal disease caused by UMOD mutation. Renal survival is highly variable in patients with UMOD mutation. Our data also add novel insights into the interpretation of uricemia and UAEF in patients with chronic kidney diseases.


Human Mutation | 2011

Mutation screening of the EYA1, SIX1, and SIX5 genes in a large cohort of patients harboring branchio-oto-renal syndrome calls into question the pathogenic role of SIX5 mutations†

Pauline Krug; Vincent Morinière; Sandrine Marlin; Valérie Koubi; Heinz Gabriel; Estelle Colin; Dominique Bonneau; Rémi Salomon; Corinne Antignac; Laurence Heidet

Branchio‐oto‐renal (BOR) syndrome is an autosomal dominant disorder characterized by branchial, ear, and renal anomalies. Over 80 mutations in EYA1 have been reported in BOR. Mutations in SIX1, a DNA binding protein that associates with EYA1, have been reported less frequently. One group has recently described four missense mutations in SIX5 in five unrelated patients with BOR. Here, we report a screening of these three genes in a cohort of 140 patients from 124 families with BOR. We identified 36 EYA1 mutations in 42 unrelated patients, 2 mutations, and 1 change of unknown significance in SIX1 in 3 unrelated patients, but no mutation in SIX5. We did not find correlation between genotype and phenotype, and observed a high phenotypic variability between and within BOR families. We show the difficulty in establishing a molecular diagnosis strategy in BOR syndrome: the screening focusing on patients with typical BOR would detect a mutation rate of 76%, but would also miss mutations in 9% of patients with atypical BOR. We detected a deletion removing three EYA1 exons in a patient who was previously reported to carry the SIX5 Thr552Met mutation. This led us to reconsider the role of SIX5 in the development of BOR. Hum Mutat 32:183–190, 2011.


Journal of The American Society of Nephrology | 2014

Improving Mutation Screening in Familial Hematuric Nephropathies through Next Generation Sequencing

Vincent Morinière; Karin Dahan; Pascale Hilbert; Marieline Lison; Said Lebbah; Alexandra Topa; Christine Bole-Feysot; Solenn Pruvost; Patrick Nitschke; Emmanuelle Plaisier; Bertrand Knebelmann; Marie-Alice Macher; Laure-Hélène Noël; Marie-Claire Gubler; Corinne Antignac; Laurence Heidet

Alport syndrome is an inherited nephropathy associated with mutations in genes encoding type IV collagen chains present in the glomerular basement membrane. COL4A5 mutations are associated with the major X-linked form of the disease, and COL4A3 and COL4A4 mutations are associated with autosomal recessive and dominant forms (thought to be involved in 15% and 1%-5% of the families, respectively) and benign familial hematuria. Mutation screening of these three large genes is time-consuming and expensive. Here, we carried out a combination of multiplex PCR, amplicon quantification, and next generation sequencing (NGS) analysis of three genes in 101 unrelated patients. We identified 88 mutations and 6 variations of unknown significance on 116 alleles in 83 patients. Two additional indel mutations were found only by secondary Sanger sequencing, but they were easily identified retrospectively with the web-based sequence visualization tool Integrative Genomics Viewer. Altogether, 75 mutations were novel. Sequencing the three genes simultaneously was particularly advantageous as the mode of inheritance could not be determined with certainty in many instances. The proportion of mutations in COL4A3 and COL4A4 was notably high, and the autosomal dominant forms of Alport syndrome appear more frequently than reported previously. Finally, this approach allowed the identification of large COL4A3 and COL4A4 rearrangements not described previously. We conclude that NGS is efficient, reduces screening time and cost, and facilitates the provision of appropriate genetic counseling in Alport syndrome.


Clinical Journal of The American Society of Nephrology | 2013

Severe Prenatal Renal Anomalies Associated with Mutations in HNF1B or PAX2 Genes

Leire Madariaga; Vincent Morinière; Cécile Jeanpierre; Raymonde Bouvier; Philippe Loget; Jelena Martinovic; Pierre Dechelotte; Nathalie Leporrier; Christel Thauvin-Robinet; Uffe Birk Jensen; Dominique Gaillard; Michèle Mathieu; Bruno Turlin; Tania Attié-Bitach; Rémi Salomon; Marie-Claire Gubler; Corinne Antignac; Laurence Heidet

BACKGROUND AND OBJECTIVES Congenital anomalies of the kidney and urinary tract (CAKUT) are a frequent cause of renal failure in children, and their detection in utero is now common with fetal screening ultrasonography. The clinical course of CAKUT detected before birth is very heterogeneous and depends on the level of nephron reduction. The most severe forms cause life-threatening renal failure, leading to perinatal death or the need for very early renal replacement therapy. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS This study reports the screening of two genes (HNF1B and PAX2) involved in monogenic syndromic CAKUT in a cohort of 103 fetuses from 91 families with very severe CAKUT that appeared isolated by fetal ultrasound examination and led to termination of pregnancy. RESULTS This study identified a disease-causing mutation in HNF1B in 12 cases from 11 families and a mutation in PAX2 in 4 unrelated cases. Various renal phenotypes were observed, but no case of bilateral agenesis was associated with HNF1B or PAX2 mutations. Autopsy identified extrarenal abnormalities not detected by ultrasonography in eight cases but confirmed the absence of extrarenal defects in eight other cases. A positive family history of renal disease was not significantly more frequent in cases with an identified mutation. Moreover, in cases with an inherited mutation, there was a great phenotypic variability regarding the severity of the renal disease within a single family. CONCLUSIONS Our results suggest that mutations in genes involved in syndromic CAKUT with Mendelian inheritance are not rare in fetal cases with severe CAKUT appearing isolated at prenatal ultrasound, a finding of clinical importance because of genetic counseling.


Human Mutation | 2012

Spectrum of mutations in the renin-angiotensin system genes in autosomal recessive renal tubular dysgenesis

Olivier Gribouval; Vincent Morinière; Audrey Pawtowski; Christelle Arrondel; Satu-Leena Sallinen; Carola Saloranta; Carol L. Clericuzio; Géraldine Viot; Julia Tantau; Sophie Blesson; Sylvie Cloarec; Marie Christine Machet; David Chitayat; Christelle Thauvin; Nicole Laurent; Julian Roy Sampson; Jonathan A. Bernstein; Alix Clemenson; Fabienne Prieur; Laurent Daniel; Annie Levy-Mozziconacci; Katherine Lachlan; Jean Luc Alessandri; François Cartault; Jean Pierre Rivière; Nicole Picard; Clarisse Baumann; Anne Lise Delezoide; Maria Belar Ortega; Nicolas Chassaing

Autosomal recessive renal tubular dysgenesis (RTD) is a severe disorder of renal tubular development characterized by early onset and persistent fetal anuria leading to oligohydramnios and the Potter sequence, associated with skull ossification defects. Early death occurs in most cases from anuria, pulmonary hypoplasia, and refractory arterial hypotension. The disease is linked to mutations in the genes encoding several components of the renin–angiotensin system (RAS): AGT (angiotensinogen), REN (renin), ACE (angiotensin‐converting enzyme), and AGTR1 (angiotensin II receptor type 1). Here, we review the series of 54 distinct mutations identified in 48 unrelated families. Most of them are novel and ACE mutations are the most frequent, observed in two‐thirds of families (64.6%). The severity of the clinical course was similar whatever the mutated gene, which underlines the importance of a functional RAS in the maintenance of blood pressure and renal blood flow during the life of a human fetus. Renal hypoperfusion, whether genetic or secondary to a variety of diseases, precludes the normal development/ differentiation of proximal tubules. The identification of the disease on the basis of precise clinical and histological analyses and the characterization of the genetic defects allow genetic counseling and early prenatal diagnosis. Hum Mutat 33:316–326, 2012.


Journal of Medical Genetics | 2011

RET and GDNF mutations are rare in fetuses with renal agenesis or other severe kidney development defects

Cécile Jeanpierre; Guillaume Macé; Mélanie Parisot; Vincent Morinière; Audrey Pawtowsky; Marion Benabou; Jelena Martinovic; Jeanne Amiel; Tania Attié-Bitach; Anne-Lise Delezoide; Philippe Loget; Patricia Blanchet; Dominique Gaillard; Marie Gonzales; Wassila Carpentier; Patrick Nitschke; Frédéric Tores; Laurence Heidet; Corinne Antignac; Rémi Salomon

Background The RET/GDNF signalling pathway plays a crucial role during development of the kidneys and the enteric nervous system. In humans, RET activating mutations cause multiple endocrine neoplasia, whereas inactivating mutations are responsible for Hirschsprung disease. RET mutations have also been reported in fetuses with renal agenesis, based on analysis of a small series of samples. Objective and methods To characterise better the involvement of RET and GDNF in kidney development defects, a series of 105 fetuses with bilateral defects, including renal agenesis, severe hypodysplasia or multicystic dysplastic kidney, was studied. RET and GDNF coding sequences, evolutionary conserved non-coding regions (ECRs) in promoters, 3′UTRs, and RET intron 1 were analysed. Copy number variations at these loci were also investigated. Results The study identified: (1) a low frequency (<7%) of potential mutations in the RET coding sequence, with inheritance from the healthy father for four of them; (2) no GDNF mutation; (3) similar allele frequencies in patients and controls for most single nucleotide polymorphism variants, except for RET intron 1 variant rs2506012 that was significantly more frequent in affected fetuses than in controls (6% vs 2%, p=0.01); (4) distribution of the few rare RET variants unidentified in controls into the various 5′-ECRs; (5) absence of copy number variations. Conclusion These results suggest that genomic alteration of RET or GDNF is not a major mechanism leading to renal agenesis and other severe kidney development defects. Analysis of a larger series of patients will be necessary to validate the association of the RET intron 1 variant rs2506012 with renal development defects.


Human Mutation | 2014

NPHS2 mutations in steroid-resistant nephrotic syndrome: A mutation update and the associated phenotypic spectrum

Karim Bouchireb; Olivia Boyer; Olivier Gribouval; Fabien Nevo; Evelyne Huynh-Cong; Vincent Morinière; Raphaëlle Campait; Elisabet Ars; Damien Brackman; Jacques Dantal; Philippe Eckart; Maddalena Gigante; Beata S. Lipska; Aurélia Liutkus; André Mégarbané; Nabil Mohsin; Fatih Ozaltin; Moin A. Saleem; Franz Schaefer; Kenza Soulami; Roser Torra; Nicolas Garcelon; Géraldine Mollet; Karin Dahan; Corinne Antignac

Mutations in the NPHS2 gene encoding podocin are implicated in an autosomal‐recessive form of nonsyndromic steroid‐resistant nephrotic syndrome in both pediatric and adult patients. Patients with homozygous or compound heterozygous mutations commonly present with steroid‐resistant nephrotic syndrome before the age of 6 years and rapidly progress to end‐stage kidney disease with a very low prevalence of recurrence after renal transplantation. Here, we reviewed all the NPHS2 mutations published between October 1999 and September 2013, and also all novel mutations identified in our personal cohort and in international genetic laboratories. We identified 25 novel pathogenic mutations in addition to the 101 already described. The mutations are distributed along the entire coding region and lead to all kinds of alterations including 53 missense, 17 nonsense, 11 small insertions, 26 small deletions, 16 splicing, two indel mutations, and one mutation in the stop codon. In addition, 43 variants were classified as variants of unknown significance, as these missense changes were exclusively described in the heterozygous state and/or considered benign by prediction software. Genotype–phenotype analyses established correlations between specific variants and age at onset, ethnicity, or clinical evolution. We created a Web database using the Leiden Open Variation Database (www.lovd.nl/NPHS2) software that will allow the inclusion of future reports.

Collaboration


Dive into the Vincent Morinière's collaboration.

Top Co-Authors

Avatar

Laurence Heidet

Necker-Enfants Malades Hospital

View shared research outputs
Top Co-Authors

Avatar

Rémi Salomon

Necker-Enfants Malades Hospital

View shared research outputs
Top Co-Authors

Avatar

Audrey Pawtowski

Necker-Enfants Malades Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olivier Gribouval

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Jelena Martinovic

Necker-Enfants Malades Hospital

View shared research outputs
Top Co-Authors

Avatar

Patrick Nitschke

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Bertrand Knebelmann

Necker-Enfants Malades Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge