Vincent Noblet
University of Strasbourg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vincent Noblet.
IEEE Transactions on Image Processing | 2005
Vincent Noblet; Christian Heinrich; Fabrice Heitz; Jean-Paul Armspach
This paper deals with topology preservation in three-dimensional (3-D) deformable image registration. This work is a nontrivial extension of , which addresses the case of two-dimensional (2-D) topology preserving mappings. In both cases, the deformation map is modeled as a hierarchical displacement field, decomposed on a multiresolution B-spline basis. Topology preservation is enforced by controlling the Jacobian of the transformation. Finding the optimal displacement parameters amounts to solving a constrained optimization problem: The residual energy between the target image and the deformed source image is minimized under constraints on the Jacobian. Unlike the 2-D case, in which simple linear constraints are derived, the 3-D B-spline-based deformable mapping yields a difficult (until now, unsolved) optimization problem. In this paper, we tackle the problem by resorting to interval analysis optimization techniques. Care is taken to keep the computational burden as low as possible. Results on multipatient 3-D MRI registration illustrate the ability of the method to preserve topology on the continuous image domain.
Medical Image Analysis | 2006
Vincent Noblet; Christian Heinrich; Fabrice Heitz; Jean-Paul Armspach
This paper proposes a comprehensive evaluation of a monomodal B-spline-based non-rigid registration algorithm allowing topology preservation in 3-D. This article is to be considered as the companion of [Noblet, V., Heinrich, C., Heitz, F., Armspach, J.-P., 2005. 3-D deformable image registration: a topology preservation scheme based on hierarchical deformation models and interval analysis optimization. IEEE Transactions on Image Processing, 14 (5), 553-566] where this algorithm, based on the minimization of an objective function, was introduced and detailed. Overall assessment is based on the estimation of synthetic deformation fields, on average brain construction, on atlas-based segmentation and on landmark mapping. The influence of the model parameters is characterized. Comparison between several objective functions is carried out and impact of their symmetrization is pointed out. An original intensity normalization scheme is also introduced, leading to significant improvements of the registration quality. The comparison benchmark is the popular demons algorithm [Thirion, J.-P., 1998. Image matching as a diffusion process: an analogy with Maxwells demons. Medical Image Analysis, 2 (3), 243-260], that exhibited best results in a recent comparison between several non-rigid 3-D registration methods [Hellier, P., Barillot, C., Corouge, I., Gibaud, B., Le Goualher, G., Collins, D.L., Evans, A., Malandain, G., Ayache, N., Christensen, G.E., Johnson, H.J., 2003. Retrospective evaluation of intersubject brain registration. IEEE Transactions on Medical Imaging, 22 (9), 1120-1130]. The topology preserving B-spline-based method proved to outperform the commonly available ITK implementation of the demons algorithms on many points. Some limits of intensity-based registration methods are also highlighted through this work.
PLOS ONE | 2012
Frédéric Blanc; Vincent Noblet; Barbara Jung; François Rousseau; Félix Renard; Bertrand Bourre; Nadine Longato; Nadjette Cremel; Laure Di Bitonto; C. Kleitz; Nicolas Collongues; Jack Foucher; Stéphane Kremer; Jean-Paul Armspach; Jérôme De Seze
Neuromyelitis optica (NMO) is an inflammatory disease of central nervous system characterized by optic neuritis and longitudinally extensive acute transverse myelitis. NMO patients have cognitive dysfunctions but other clinical symptoms of brain origin are rare. In the present study, we aimed to investigate cognitive functions and brain volume in NMO. The study population consisted of 28 patients with NMO and 28 healthy control subjects matched for age, sex and educational level. We applied a French translation of the Brief Repeatable Battery (BRB-N) to the NMO patients. Using SIENAx for global brain volume (Grey Matter, GM; White Matter, WM; and whole brain) and VBM for focal brain volume (GM and WM), NMO patients and controls were compared. Voxel-level correlations between diminished brain concentration and cognitive performance for each tests were performed. Focal and global brain volume of NMO patients with and without cognitive impairment were also compared. Fifteen NMO patients (54%) had cognitive impairment with memory, executive function, attention and speed of information processing deficits. Global and focal brain atrophy of WM but not Grey Matter (GM) was found in the NMO patients group. The focal WM atrophy included the optic chiasm, pons, cerebellum, the corpus callosum and parts of the frontal, temporal and parietal lobes, including superior longitudinal fascicle. Visual memory, verbal memory, speed of information processing, short-term memory and executive functions were correlated to focal WM volumes. The comparison of patients with, to patients without cognitive impairment showed a clear decrease of global and focal WM, including brainstem, corticospinal tracts, corpus callosum but also superior and inferior longitudinal fascicles. Cognitive impairment in NMO patients is correlated to the decreased of global and focal WM volume of the brain. Further studies are needed to better understand the precise origin of cognitive impairment in NMO patients, particularly in the WM.
PLOS ONE | 2012
Nathalie Philippi; Vincent Noblet; Anne Botzung; Olivier Després; Félix Renard; Giorgos Sfikas; Benjamin Cretin; Stéphane Kremer; Lilianne Manning; Frédéric Blanc
The aim of the present volumetric study was to explore the neuro-anatomical correlates of autobiographical memory loss in Alzheimers patients and healthy elderly, in terms of the delay of retention, with a particular interest in the medial temporal lobe structures. Fifteen patients in early stages of the disease and 11 matched control subjects were included in the study. To assess autobiographical memory and the effect of the retention delay, a modified version of the Crovitz test was used according to five periods of life. Autobiographical memory deficits were correlated to local atrophy via structural MRI using Voxel Based Morphometry. We used a ‘lateralized index’ to compare the relative contribution of hippocampal sub-regions (anterior vs posterior, left vs right) according to the different periods of life. Our results confirm the involvement of the hippocampus proper in autobiographical memory retrieval for both recent and very remote encoding periods, with larger aspect for the very remote period on the left side. Contrary to the prominent left-sided involvement for the young adulthood period, the implication of the right hippocampus prevails for the more recent periods and decreases with the remotness of the memories, which might be associated with the visuo-spatial processing of the memories. Finally, we suggest the existence of a rostrocaudal gradient depending on the retention duration, with left anterior aspects specifically related to retrieval deficits of remote memories from the young adulthood period, whereas posterior aspects would result of simultaneous encoding and/or consolidation and retrieval deficit of more recent memories.
IEEE Transactions on Image Processing | 2011
Sylvain Faisan; Nicolas Passat; Vincent Noblet; Renee Chabrier; Christophe Meyer
The estimation of one-to-one mappings is one of the most intensively studied topics in the research field of nonrigid registration. Although the computation of such mappings can be now accurately and efficiently performed, the solutions for using them in the context of binary image deformation is much less satisfactory. In particular, warping a binary image with such transformations may alter its discrete topological properties if common resampling strategies are considered. In order to deal with this issue, this paper proposes a method for warping such images according to continuous and bijective mappings while preserving their discrete topological properties (i.e., their homotopy type). Results obtained in the context of the atlas-based segmentation of complex anatomical structures highlight the advantages of the proposed approach.
Medical Image Analysis | 2010
Swati Sharma; Vincent Noblet; François Rousseau; Fabrice Heitz; Lucien Rumbach; Jean-Paul Armspach
A number of analysis tools have been developed for the estimation of brain atrophy using MRI. Since brain atrophy is being increasingly used as a marker of disease progression in many neuro-degenerative diseases such as Multiple Sclerosis and Alzheimers disease, the validation of these tools is an important task. However, this is complex, in the real scenario, due to the absence of gold standards for comparison. In order to create gold standards, we first propose an approach for the realistic simulation of brain tissue loss that relies on the estimation of a topology preserving B-spline based deformation fields. Using these gold standards, an evaluation of the performance of three standard brain atrophy estimation methods (SIENA, SIENAX and BSI-UCD), on the basis of their robustness to various sources of error (bias-field inhomogeneity, noise, geometrical distortions, interpolation artefacts and presence of lesions), is presented. Our evaluation shows that, in general, bias-field inhomogeneity and noise lead to larger errors in the estimated atrophy than geometrical distortions and interpolation artefacts. Experiments on 18 different anatomical models of the brain after simulating whole brain atrophies in the range of 0.2-1.5% indicate that, in the presence of bias-field inhomogeneity and noise, a mean error of 0.64+/-0.53%,4.00+/-2.41% and 1.79+/-0.97% may be expected in the atrophy estimated by SIENA, SIENAX and BSI-UCD, respectively.
Alzheimer's Research & Therapy | 2015
Camille Heitz; Vincent Noblet; Benjamin Cretin; Nathalie Philippi; Laurent Kremer; Mélanie Stackfleth; Fabrice Hubele; Jean Paul Armspach; Izzie Namer; Frédéric Blanc
IntroductionThe aim of this study was to investigate the association between visual hallucinations in dementia with Lewy bodies (DLB) and brain perfusion using single-photon emission computed tomography.MethodsWe retrospectively included 66 patients with DLB, 36 of whom were having visual hallucinations (DLB-hallu) and 30 of whom were not (DLB-c). We assessed visual hallucination severity on a 3-point scale of increasing severity: illusions, simple visual hallucinations and complex visual hallucinations. We performed voxel-level comparisons between the two groups and assessed correlations between perfusion and visual hallucinations severity.ResultsWe found a significant decrease in perfusion in the left anterior cingulate cortex, the left orbitofrontal cortex and the left cuneus in the DLB-hallu group compared with the DLB-c group. We also found a significant correlation between decreased bilateral anterior cingulate cortex, left orbitofrontal cortex, right parahippocampal gyrus, right inferior temporal cortex and left cuneus perfusion with the severity of hallucinations.ConclusionsVisual hallucinations seem to be associated with the impairment of anterior and posterior regions (secondary visual areas, orbitofrontal cortex and anterior cingulate cortex) involved in a top-down and bottom-up mechanism, respectively. Furthermore, involvement of the bilateral anterior cingulate cortex and right parahippocampal gyrus seems to lead to more complex hallucinations.
medical image computing and computer assisted intervention | 2008
Vincent Noblet; Christian Heinrich; Fabrice Heitz; Jean-Paul Armspach
Image registration aims at estimating a consistent mapping between two images. Common techniques consist in choosing arbitrarily one image as a reference image and the other one as a floating image, thus leading to the estimation of inconsistent mappings. We present a symmetric formulation of the registration problem that maps the two images in a common coordinate system halfway between them. This framework has been considered to devise an efficient strategy for mapping a large set of images in a common coordinate system. Some results are presented in the context of 3-D nonrigid brain MR image registration for the construction of average brain templates.
european conference on computer vision | 2004
Vincent Noblet; Christian Heinrich; Fabrice Heitz; Jean-Paul Armspach
3-D non-rigid brain image registration aims at estimating consistently long-distance and highly nonlinear deformations corresponding to anatomical variability between individuals. A consistent mapping is expected to preserve the integrity of warped structures and not to be dependent on the arbitrary choice of a reference image: the estimated transformation from A to B should be equal to the inverse transformation from B to A. This paper addresses these two issues in the context of a hierarchical parametric modeling of the mapping, based on B-spline functions. The parameters of the model are estimated by minimizing a symmetric form of the standard sum of squared differences criterion. Topology preservation is ensured by constraining the Jacobian of the transformation to remain positive on the whole continuous domain of the image as a non trivial 3-D extension of a previous work [1] dealing with the 2-D case. Results on synthetic and real-world data are shown to illustrate the contribution of preserving topology and using a symmetric similarity function.
Alzheimer's Research & Therapy | 2016
Nathalie Philippi; Vincent Noblet; E. Duron; B. Cretin; C. Boully; I. Wisniewski; M. L. Seux; C. Martin-Hunyadi; E. Chaussade; C. Demuynck; S. Kremer; S. Lehéricy; D. Gounot; Jean-Paul Armspach; Olivier Hanon; Frédéric Blanc
BackgroundThe aim of this volumetric study was to explore the neuroanatomical correlates of the Free and Cued Selective Reminding Test (FCSRT) and the Delayed Matching-to-Sample—48 items (DMS-48), two tests widely used in France to assess verbal and visual anterograde memory. We wanted to determine to what extent the two tests rely on the medial temporal lobe, and could therefore be predictive of Alzheimer’s disease, in which pathological changes typically start in this region.MethodsWe analysed data from a cohort of 138 patients with mild cognitive impairment participating in a longitudinal multicentre clinical research study. Verbal memory was assessed using the FCSRT and visual recognition memory was evaluated using the DMS-48. Performances on these two tests were correlated to local grey matter atrophy via structural MRI using voxel-based morphometry.ResultsOur results confirm the existence of a positive correlation between the volume of the medial temporal lobe and the performance on the FCSRT, prominently on the left, and the performance on the DMS-48, on the right, for the whole group of patients (family-wise error, P < 0.05). Interestingly, this region remained implicated only in the subgroup of patients who had deficient scores on the cued recall of the FCSRT, whereas the free recall was associated with prefrontal aspects. For the DMS-48, it was only implicated for the group of patients whose performances declined between the immediate and delayed trial. Conversely, temporo-parietal cortices were implicated when no decline was observed. Within the medial temporal lobe, the parahippocampal gyrus was prominently involved for the FCSRT and the immediate trial of the DMS-48, whereas the hippocampus was solely involved for the delayed trial of the DMS-48.ConclusionsThe two tests are able to detect an amnestic profile of the medial temporal type, under the condition that the scores remain deficient after the cued recall of the FCSRT or decline on the delayed recognition trial of the DMS-48. Strategic retrieval as well as perceptual/attentional processes, supported by prefrontal and temporo-parietal cortices, were also found to have an impact on the performances. Finally, the implication of the hippocampus appears time dependent, triggered by a longer delay than the parahippocampus, rather than determined by the sense of recollection or the encoding strength associated with the memory trace.