Vincent Pilaud
École Polytechnique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vincent Pilaud.
European Journal of Combinatorics | 2012
Vincent Pilaud; Francisco Santos
The associahedron is a polytope whose graph is the graph of flips on triangulations of a convex polygon. Pseudotriangulations and multitriangulations generalize triangulations in two different ways, which have been unified by Pilaud & Pocchiola in their study of flip graphs on pseudoline arrangements with contacts supported by a given sorting network. In this paper, we construct the brick polytope of a sorting network, obtained as the convex hull of the brick vectors associated to each pseudoline arrangement supported by the network. We combinatorially characterize the vertices of this polytope, describe its faces, and decompose it as a Minkowski sum of matroid polytopes. Our brick polytopes include Hohlweg & Langes many realizations of the associahedron, which arise as brick polytopes for certain well-chosen sorting networks. We furthermore discuss the brick polytopes of sorting networks supporting pseudoline arrangements which correspond to multitriangulations of convex polygons: our polytopes only realize subgraphs of the flip graphs on multitriangulations and they cannot appear as projections of a hypothetical multiassociahedron.
Discrete and Computational Geometry | 2009
Vincent Pilaud; Francisco Santos
Maximal (k+1)-crossing-free graphs on a planar point set in convex position, that is, k-triangulations, have received attention in recent literature, motivated by several interpretations of them.We introduce a new way of looking at k-triangulations, namely as complexes of star polygons. With this tool we give new, direct proofs of the fundamental properties of k-triangulations, as well as some new results. This interpretation also opens up new avenues of research that we briefly explore in the last section.
Discrete and Computational Geometry | 2012
Vincent Pilaud; Michel Pocchiola
We study the set of all pseudoline arrangements with contact points which cover a given support. We define a natural notion of flip between these arrangements and study the graph of these flips. In particular, we provide an enumeration algorithm for arrangements with a given support, based on the properties of certain greedy pseudoline arrangements and on their connection with sorting networks. Both the running time per arrangement and the working space of our algorithm are polynomial.As the motivation for this work, we provide in this paper a new interpretation of both pseudotriangulations and multitriangulations in terms of pseudoline arrangements on specific supports. This interpretation explains their common properties and leads to a natural definition of multipseudotriangulations, which generalizes both. We study elementary properties of multipseudotriangulations and compare them to iterations of pseudotriangulations.
Combinatorica | 2018
Carsten Lange; Vincent Pilaud
An associahedron is a polytope whose vertices correspond to triangulations of a convex polygon and whose edges correspond to flips between them. Using labeled polygons, C. Hohlweg and C. Lange constructed various realizations of the associahedron with relevant properties related to the symmetric group and the permutahedron. We introduce the spine of a triangulation as its dual tree together with a labeling and an orientation. This notion extends the classical understanding of the associahedron via binary trees, introduces a new perspective on C. Hohlweg and C. Lange’s construction closer to J.-L. Loday’s original approach, and sheds light upon the combinatorial and geometric properties of the resulting realizations of the associahedron. It also leads to noteworthy proofs which shorten and simplify previous approaches.
arXiv: Combinatorics | 2015
Vincent Pilaud; Christian Stump
We show that the vertex barycenter of generalized associahedra and permutahedra coincide for any finite Coxeter system.
Discrete Mathematics & Theoretical Computer Science | 2013
Vincent Pilaud; Christian Stump
We describe edge labelings of the increasing flip graph of a subword complex on a finite Coxeter group, and study applications thereof. On the one hand, we show that they provide canonical spanning trees of the facet-ridge graph of the subword complex, describe inductively these trees, and present their close relations to greedy facets. Searching these trees yields an efficient algorithm to generate all facets of the subword complex, which extends the greedy flip algorithm for pointed pseudotriangulations. On the other hand, when the increasing flip graph is a Hasse diagram, we show that the edge labeling is indeed an EL-labeling and derive further combinatorial properties of paths in the increasing flip graph. These results apply in particular to Cambrian lattices, in which case a similar EL-labeling was recently studied by M. Kallipoliti and H. Muhle.
Israel Journal of Mathematics | 2012
Julian Pfeifle; Vincent Pilaud; Francisco Santos
We study the question of polytopality of graphs: when is a given graph the graph of a polytope? We first review the known necessary conditions for a graph to be polytopal, and we present three families of graphs which satisfy all these conditions, but which nonetheless are not graphs of polytopes.Our main contribution concerns the polytopality of Cartesian products of non-polytopal graphs. On the one hand, we show that products of simple polytopes are the only simple polytopes whose graph is a product. On the other hand, we provide a general method to construct (non-simple) polytopal products whose factors are not polytopal.
European Journal of Combinatorics | 2015
Jürgen Bokowski; Vincent Pilaud
An
Ars Mathematica Contemporanea | 2015
Jürgen Bokowski; Vincent Pilaud
(n_k)
arXiv: Combinatorics | 2014
Nicolai Hähnle; Steven Klee; Vincent Pilaud
configuration is a set of