Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vincent R. Vermeul is active.

Publication


Featured researches published by Vincent R. Vermeul.


Journal of Hazardous Materials | 2013

Rheological behavior of xanthan gum solution related to shear thinning fluid delivery for subsurface remediation

Lirong Zhong; Martinus Oostrom; Michael J. Truex; Vincent R. Vermeul; James E. Szecsody

Xanthan gum solutions are shear thinning fluids which can be used as delivery media to improve the distribution of remedial amendments injected into heterogeneous subsurface environments. The rheological behavior of the shear thinning solution needs to be known to develop an appropriate design for field injection. In this study, the rheological properties of xanthan gum solutions were obtained under various chemical and environmental conditions relevant to delivery of remedial amendments to groundwater. Higher xanthan concentration raised the absolute solution viscosity and increased the degree of shear thinning. Addition of remedial amendments (e.g., phosphate, sodium lactate, ethyl lactate) caused the dynamic viscosity of xanthan solutions to decrease, but they maintained shear-thinning properties. Use of mono- and divalent salts (e.g., Na(+), Ca(2+)) to increase the solution ionic strength also decreased the dynamic viscosity of xanthan and the degree of shear thinning, although the effect reversed at high xanthan concentrations. A power law analysis showed that the consistency index is a linear function of the xanthan concentration. The degree of shear thinning, however, is best described using a logarithmic function. Mechanisms to describe the observed empiricism have been discussed. In the absence of sediments, xanthan solutions maintained their viscosity for months. However, the solutions lost their viscosity over a period of days to weeks when in contact with site sediment. Loss of viscosity is attributed to physical and biodegradation processes.


Archive | 2009

Borehole Completion and Conceptual Hydrogeologic Model for the IFRC Well Field, 300 Area, Hanford Site

Bruce N. Bjornstad; Jacob A. Horner; Vincent R. Vermeul; David C. Lanigan; Paul D. Thorne

A tight cluster of 35 new wells was installed over a former waste site, the South Process Pond (316-1 waste site), in the Hanford Site 300 Area in summer 2008. This report documents the details of the drilling, sampling, and well construction for the new array and presents a summary of the site hydrogeology based on the results of drilling and preliminary geophysical logging.


Environmental Science & Technology | 2011

Demonstration of combined zero-valent iron and electrical resistance heating for in situ trichloroethene remediation.

Michael J. Truex; Tamzen W. Macbeth; Vincent R. Vermeul; Brad G. Fritz; Donaldo P. Mendoza; Rob D. Mackley; Thomas W. Wietsma; Greg Sandberg; Thomas Powell; Jeff Powers; Emile Pitre; Mandy M. Michalsen; Sage Ballock-Dixon; Lirong Zhong; Martinus Oostrom

The effectiveness of in situ treatment using zero-valent iron (ZVI) for nonaqueous phase or significant sediment-associated contaminant mass can be limited by relatively low rates of mass transfer to bring contaminants in contact with the reactive media. For a field test in a trichloroethene (TCE) source area, combining moderate-temperature subsurface electrical resistance heating with in situ ZVI treatment was shown to accelerate TCE treatment by a factor of about 4 based on organic daughter products and a factor about 8 based on chloride concentrations. A mass-discharge-based analysis was used to evaluate reaction, dissolution, and volatilization processes at ambient groundwater temperature (~10 °C) and as temperature was increased up to about 50 °C. Increased reaction and contaminant dissolution were observed with increased temperature, but vapor- or aqueous-phase migration of TCE out of the treatment zone was minimal during the test because reactions maintained low aqueous-phase TCE concentrations.


Ground Water | 2011

River‐Induced Flow Dynamics in Long‐Screen Wells and Impact on Aqueous Samples

Vincent R. Vermeul; James P. McKinley; Darrell R. Newcomer; Rob D. Mackley; John M. Zachara

Previously published field investigations and modeling studies have demonstrated the potential for sample bias associated with vertical wellbore flow in conventional monitoring wells constructed with long-screened intervals. This article builds on the existing body of literature by (1) demonstrating the utility of continuous (i.e., hourly measurements for ∼1 month) ambient wellbore flow monitoring and (2) presenting results from a field experiment where relatively large wellbore flows (up to 4 L/min) were induced by aquifer hydrodynamics associated with a fluctuating river boundary located approximately 250 m from the test well. The observed vertical wellbore flows were strongly correlated with fluctuations in river stage, alternating between upward and downward flow throughout the monitoring period in response to changes in river stage. Continuous monitoring of ambient wellbore flows using an electromagnetic borehole flowmeter allowed these effects to be evaluated in concert with continuously monitored river-stage elevations (hourly) and aqueous uranium concentrations (daily) in a long-screen well and an adjacent multilevel well cluster. This study demonstrates that when contaminant concentrations within the aquifer vary significantly over the depth interval interrogated, river-induced vertical wellbore flow can result in variations in measured concentration that nearly encompass the full range of variation in aquifer contaminant concentration with depth.


Water Resources Research | 2013

Application of ensemble‐based data assimilation techniques for aquifer characterization using tracer data at Hanford 300 area

Xingyuan Chen; Glenn E. Hammond; Christopher J. Murray; Mark L. Rockhold; Vincent R. Vermeul; John M. Zachara

Subsurface aquifer characterization often involves high parameter dimensionality and requires tremendous computational resources if employing a full Bayesian approach. Ensemble-based data assimilation techniques, including filtering and smoothing, are computationally efficient alternatives. Despite the increasing number of applications of ensemble-based methods in assimilating flow and transport related data for subsurface aquifer charaterization, most are limited to either synthetic studies or two-dimensional problems. In this study, we applied ensemble-based techniques for assimilating field tracer experimental data obtained from the Integrated Field Research Challenge (IFRC) site at the Hanford 300 Area. The forward problem was simulated using the massively-parallel three-dimensional flow and transport code PFLOTRAN to effectively deal with the highly transient flow boundary conditions at the site and to meet the computational demands of ensemble-based methods. This study demonstrates the effectiveness of ensemble-based methods for characterizing a heterogeneous aquifer by sequentially assimilating multiple types of data. The necessity of employing high performance computing is shown to enable increasingly mechanistic non-linear forward simulations to be performed within the data assimilation framework for a complex system with reasonable turnaround time.


Archive | 2009

300 Area Uranium Stabilization Through Polyphosphate Injection: Final Report

Vincent R. Vermeul; Bruce N. Bjornstad; Brad G. Fritz; Jonathan S. Fruchter; Rob D. Mackley; Darrell R. Newcomer; Donaldo P. Mendoza; Mark L. Rockhold; Dawn M. Wellman; Mark D. Williams

The objective of the treatability test was to evaluate the efficacy of using polyphosphate injections to treat uranium-contaminated groundwater in situ. A test site consisting of an injection well and 15 monitoring wells was installed in the 300 Area near the process trenches that had previously received uranium-bearing effluents. This report summarizes the work on the polyphosphate injection project, including bench-scale laboratory studies, a field injection test, and the subsequent analysis and interpretation of the results. Previous laboratory tests have demonstrated that when a soluble form of polyphosphate is injected into uranium-bearing saturated porous media, immobilization of uranium occurs due to formation of an insoluble uranyl phosphate, autunite [Ca(UO2)2(PO4)2•nH2O]. These tests were conducted at conditions expected for the aquifer and used Hanford soils and groundwater containing very low concentrations of uranium (10-6 M). Because autunite sequesters uranium in the oxidized form U(VI) rather than forcing reduction to U(IV), the possibility of re-oxidation and subsequent re-mobilization is negated. Extensive testing demonstrated the very low solubility and slow dissolution kinetics of autunite. In addition to autunite, excess phosphorous may result in apatite mineral formation, which provides a long-term source of treatment capacity. Phosphate arrival response data indicate that, under site conditions, the polyphosphate amendment could be effectively distributed over a relatively large lateral extent, with wells located at a radial distance of 23 m (75 ft) reaching from between 40% and 60% of the injection concentration. Given these phosphate transport characteristics, direct treatment of uranium through the formation of uranyl-phosphate mineral phases (i.e., autunite) could likely be effectively implemented at full field scale. However, formation of calcium-phosphate mineral phases using the selected three-phase approach was problematic. Although amendment arrival response data indicate some degree of overlap between the reactive species and thus potential for the formation of calcium-phosphate mineral phases (i.e., apatite formation), the efficiency of this treatment approach was relatively poor. In general, uranium performance monitoring results support the hypothesis that limited long-term treatment capacity (i.e., apatite formation) was established during the injection test. Two separate overarching issues affect the efficacy of apatite remediation for uranium sequestration within the 300 Area: 1) the efficacy of apatite for sequestering uranium under the present geochemical and hydrodynamic conditions, and 2) the formation and emplacement of apatite via polyphosphate technology. In addition, the long-term stability of uranium sequestered via apatite is dependent on the chemical speciation of uranium, surface speciation of apatite, and the mechanism of retention, which is highly susceptible to dynamic geochemical conditions. It was expected that uranium sequestration in the presence of hydroxyapatite would occur by sorption and/or surface complexation until all surface sites have been depleted, but that the high carbonate concentrations in the 300 Area would act to inhibit the transformation of sorbed uranium to chernikovite and/or autunite. Adsorption of uranium by apatite was never considered a viable approach for in situ uranium sequestration in and of itself, because by definition, this is a reversible reaction. The efficacy of uranium sequestration by apatite assumes that the adsorbed uranium would subsequently convert to autunite, or other stable uranium phases. Because this appears to not be the case in the 300 Area aquifer, even in locations near the river, apatite may have limited efficacy for the retention and long-term immobilization of uranium at the 300 Area site..


Archive | 2008

Interim Report: 100-NR-2 Apatite Treatability Test: Low Concentration Calcium Citrate-Phosphate Solution Injection for In Situ Strontium-90 Immobilization

Mark D. Williams; Brad G. Fritz; Donaldo P. Mendoza; Mark L. Rockhold; Paul D. Thorne; YuLong Xie; Bruce N. Bjornstad; Rob D. Mackley; Darrell R. Newcomer; James E. Szecsody; Vincent R. Vermeul

Following an evaluation of potential Sr-90 treatment technologies and their applicability under 100-NR-2 hydrogeologic conditions, U.S. Department of Energy, Fluor Hanford, Inc., Pacific Northwest National Laboratory, and the Washington Department of Ecology agreed that the long-term strategy for groundwater remediation at 100-N Area will include apatite sequestration as the primary treatment, followed by a secondary treatment if necessary (most likely phytoremediation). Since then, the agencies have worked together to agree on which apatite sequestration technology has the greatest chance of reducing Sr-90 flux to the river at a reasonable cost. In July 2005, aqueous injection, (i.e., the introduction of apatite-forming chemicals into the subsurface) was endorsed as the interim remedy and selected for field testing. Studies are in progress to assess the efficacy of in situ apatite formation by aqueous solution injection to address both the vadose zone and the shallow aquifer along the 300 ft of shoreline where Sr-90 concentrations are highest. This report describes the field testing of the shallow aquifer treatment.


Archive | 2008

300 Area Treatability Test: Laboratory Development of Polyphosphate Remediation Technology for In Situ Treatment of Uranium Contamination in the Vadose Zone and Capillary Fringe

Dawn M. Wellman; Eric M. Pierce; Diana H. Bacon; Martinus Oostrom; Katie M. Gunderson; Samuel M. Webb; Chase C. Bovaird; Elsa A. Cordova; Eric T. Clayton; Kent E. Parker; Ruby M. Ermi; Steven R. Baum; Vincent R. Vermeul; Jonathan S. Fruchter

A laboratory testing program has been conducted to optimize polyphosphate remediation technology for implementation through a field-scale technology infiltration demonstration to stabilize soluble, uranium-bearing source phases in the vadose zone and capillary fringe. Source treatment in the deep vadose zone will accelerate the natural attenuation of uranium to more thermodynamically stable uranium-phosphate minerals, enhancing the performance of the proposed polyphosphate remediation within the 300 Area aquifer. The objective of this investigation was to develop polyphosphate remediation technology to treat uranium contamination contained within the deep vadose zone and capillary fringe. This chapter presents the results of an investigation that evaluated the rate and extent of reaction between polyphosphate and the uranium mineral phases present within the 300 Area, and autunite formation as a function of polyphosphate formulation and concentration. This information is critical for identifying the optimum implementation approach and controlling the flux of uranium to the underlying aquifer during remediation. Results from this investigation may be used to design a full-scale remediation of uranium at the 300 Area of the Hanford Site.


Other Information: PBD: 29 Aug 2001 | 2001

Transient Inverse Calibration of Site-Wide Groundwater Model to Hanford Operational Impacts from 1943 to 1996--Alternative Conceptual Model Considering Interaction with Uppermost Basalt Confined Aquifer

Vincent R. Vermeul; Charles R. Cole; Marcel P. Bergeron; Paul D. Thorne; Signe K. Wurstner

The baseline three-dimensional transient inverse model for the estimation of site-wide scale flow parameters, including their uncertainties, using data on the transient behavior of the unconfined aquifer system over the entire historical period of Hanford operations, has been modified to account for the effects of basalt intercommunication between the Hanford unconfined aquifer and the underlying upper basalt confined aquifer. Both the baseline and alternative conceptual models (ACM-1) considered only the groundwater flow component and corresponding observational data in the 3-Dl transient inverse calibration efforts. Subsequent efforts will examine both groundwater flow and transport. Comparisons of goodness of fit measures and parameter estimation results for the ACM-1 transient inverse calibrated model with those from previous site-wide groundwater modeling efforts illustrate that the new 3-D transient inverse model approach will strengthen the technical defensibility of the final model(s) and provide the ability to incorporate uncertainty in predictions related to both conceptual model and parameter uncertainty.


Archive | 2007

Treatability Test Plan for 300 Area Uranium Stabilization through Polyphosphate Injection

Vincent R. Vermeul; Mark D. Williams; Brad G. Fritz; Rob D. Mackley; Donaldo P. Mendoza; Darrell R. Newcomer; Mark L. Rockhold; Bruce A. Williams; Dawn M. Wellman

The U.S. Department of Energy has initiated a study into possible options for stabilizing uranium at the 300 Area using polyphosphate injection. As part of this effort, PNNL will perform bench- and field-scale treatability testing designed to evaluate the efficacy of using polyphosphate injections to reduced uranium concentrations in the groundwater to meet drinking water standards (30 ug/L) in situ. This technology works by forming phosphate minerals (autunite and apatite) in the aquifer that directly sequester the existing aqueous uranium in autunite minerals and precipitates apatite minerals for sorption and long term treatment of uranium migrating into the treatment zone, thus reducing current and future aqueous uranium concentrations. Polyphosphate injection was selected for testing based on technology screening as part of the 300-FF-5 Phase III Feasibility Study for treatment of uranium in the 300-Area.

Collaboration


Dive into the Vincent R. Vermeul's collaboration.

Top Co-Authors

Avatar

Mark D. Williams

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James E. Szecsody

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Brad G. Fritz

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Michael J. Truex

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Mark L. Rockhold

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Rob D. Mackley

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Martinus Oostrom

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Darrell R. Newcomer

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Dawn M. Wellman

Pacific Northwest National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge