Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vincent S. Tagliabracci is active.

Publication


Featured researches published by Vincent S. Tagliabracci.


Science | 2012

Secreted Kinase Phosphorylates Extracellular Proteins that Regulate Biomineralization

Vincent S. Tagliabracci; James L. Engel; Jianzhong Wen; Sandra E. Wiley; Carolyn A. Worby; Lisa N. Kinch; Junyu Xiao; Nick V. Grishin; Jack E. Dixon

The Real McCoy Some secreted proteins are phosphorylated, the most prominent example being the milk protein casein, but the enzymes that catalyze such phosphorylation have not been identified. (The proteins known as “casein kinases” are in fact cytosolic proteins and do not mediate physiological phosphorylation of casein.) Tagliabracci et al. (p. 1150, published online 10 May) searched for a human protein with the characteristics expected of a secretory protein kinase and identified Fam20C. Mutations in the gene encoding Fam20C cause defects in bone formation. Furthermore, the consensus sequence for Fam20C phosphorylation was found in several secreted proteins that function in biomineralization. Thus, Fam20C appears to be the “real” casein kinase and to function in bone physiology. The elusive enzyme that modifies proteins involved in building bone and teeth has now been identified. Protein phosphorylation is a fundamental mechanism regulating nearly every aspect of cellular life. Several secreted proteins are phosphorylated, but the kinases responsible are unknown. We identified a family of atypical protein kinases that localize within the Golgi apparatus and are secreted. Fam20C appears to be the Golgi casein kinase that phosphorylates secretory pathway proteins within S-x-E motifs. Fam20C phosphorylates the caseins and several secreted proteins implicated in biomineralization, including the small integrin-binding ligand, N-linked glycoproteins (SIBLINGs). Consequently, mutations in Fam20C cause an osteosclerotic bone dysplasia in humans known as Raine syndrome. Fam20C is thus a protein kinase dedicated to the phosphorylation of extracellular proteins.


Science | 2015

Differential regulation of mTORC1 by leucine and glutamine

Jenna L. Jewell; Young Chul Kim; Ryan C. Russell; Fa-Xing Yu; Hyun Woo Park; Steven W. Plouffe; Vincent S. Tagliabracci; Kun-Liang Guan

Getting specific about amino acid sensing The protein kinase complex mTORC1 regulates growth and metabolism, and its activity is controlled in response to the abundance of cellular amino acids. Jewell et al. report that control of mTORC1 in response to glutamine does not require the Rag guanosine triphosphatase (GTPase) implicated in the sensing of other amino acids such as leucine (see the Perspective by Abraham). For sensing of glutamine, another GTPase, Arf1, was required. Distinct mechanisms thus appear to couple various amino acids to signaling by the mTORC1 complex. Science, this issue p. 194; see also p. 128 Distinct mechanisms sense amino acids leucine and glutamine at the lysosome. [Also see Perspective by Abraham] The mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) integrates environmental and intracellular signals to regulate cell growth. Amino acids stimulate mTORC1 activation at the lysosome in a manner thought to be dependent on the Rag small guanosine triphosphatases (GTPases), the Ragulator complex, and the vacuolar H+–adenosine triphosphatase (v-ATPase). We report that leucine and glutamine stimulate mTORC1 by Rag GTPase-dependent and -independent mechanisms, respectively. Glutamine promoted mTORC1 translocation to the lysosome in RagA and RagB knockout cells and required the v-ATPase but not the Ragulator. Furthermore, we identified the adenosine diphosphate ribosylation factor–1 GTPase to be required for mTORC1 activation and lysosomal localization by glutamine. Our results uncover a signaling cascade to mTORC1 activation independent of the Rag GTPases and suggest that mTORC1 is differentially regulated by specific amino acids.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Laforin is a glycogen phosphatase, deficiency of which leads to elevated phosphorylation of glycogen in vivo

Vincent S. Tagliabracci; Julie Turnbull; Wei Wang; Jean Marie Girard; Xiaochu Zhao; Alexander V. Skurat; Antonio V. Delgado-Escueta; Berge A. Minassian; Peter J. Roach

Lafora disease is a progressive myoclonus epilepsy with onset typically in the second decade of life and death within 10 years. Lafora bodies, deposits of abnormally branched, insoluble glycogen-like polymers, form in neurons, muscle, liver, and other tissues. Approximately half of the cases of Lafora disease result from mutations in the EPM2A gene, which encodes laforin, a member of the dual-specificity protein phosphatase family that additionally contains a glycogen binding domain. The molecular basis for the formation of Lafora bodies is completely unknown. Glycogen, a branched polymer of glucose, contains a small amount of covalently linked phosphate whose origin and function are obscure. We report here that recombinant laforin is able to release this phosphate in vitro, in a time-dependent reaction with an apparent Km for glycogen of 4.5 mg/ml. Mutations of laforin that disable the glycogen binding domain also eliminate its ability to dephosphorylate glycogen. We have also analyzed glycogen from a mouse model of Lafora disease, Epm2a−/− mice, which develop Lafora bodies in several tissues. Glycogen isolated from these mice had a 40% increase in the covalent phosphate content in liver and a 4-fold elevation in muscle. We propose that excessive phosphorylation of glycogen leads to aberrant branching and Lafora body formation. This study provides a molecular link between an observed biochemical property of laforin and the phenotype of a mouse model of Lafora disease. The results also have important implications for glycogen metabolism generally.


Journal of Biological Chemistry | 2008

Abnormal Metabolism of Glycogen Phosphate as a Cause for Lafora Disease

Vincent S. Tagliabracci; Jean Marie Girard; Dyann M. Segvich; Catalina M. Meyer; Julie Turnbull; Xiaochu Zhao; Berge A. Minassian; Peter J. Roach

Lafora disease is a progressive myoclonus epilepsy with onset in the teenage years followed by neurodegeneration and death within 10 years. A characteristic is the widespread formation of poorly branched, insoluble glycogen-like polymers (polyglucosan) known as Lafora bodies, which accumulate in neurons, muscle, liver, and other tissues. Approximately half of the cases of Lafora disease result from mutations in the EPM2A gene, which encodes laforin, a member of the dual specificity protein phosphatase family that is able to release the small amount of covalent phosphate normally present in glycogen. In studies of Epm2a–/– mice that lack laforin, we observed a progressive change in the properties and structure of glycogen that paralleled the formation of Lafora bodies. At three months, glycogen metabolism remained essentially normal, even though the phosphorylation of glycogen has increased 4-fold and causes altered physical properties of the polysaccharide. By 9 months, the glycogen has overaccumulated by 3-fold, has become somewhat more phosphorylated, but, more notably, is now poorly branched, is insoluble in water, and has acquired an abnormal morphology visible by electron microscopy. These glycogen molecules have a tendency to aggregate and can be recovered in the pellet after low speed centrifugation of tissue extracts. The aggregation requires the phosphorylation of glycogen. The aggregrated glycogen sequesters glycogen synthase but not other glycogen metabolizing enzymes. We propose that laforin functions to suppress excessive glycogen phosphorylation and is an essential component of the metabolism of normally structured glycogen.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Dynamic regulation of FGF23 by Fam20C phosphorylation, GalNAc-T3 glycosylation, and furin proteolysis

Vincent S. Tagliabracci; James L. Engel; Sandra E. Wiley; Junyu Xiao; David J. Gonzalez; Hitesh Appaiah; Antonius Koller; Victor Nizet; Kenneth E. White; Jack E. Dixon

Significance The family with sequence similarity 20, member C (Fam20C) is a secretory pathway-specific kinase that phosphorylates secreted proteins on Ser-x-Glu/pSer motifs. Mutations in human FAM20C cause a devastating childhood disorder known as Raine syndrome. Some patients with FAM20C mutations as well as Fam20C KO mice develop hypophosphatemia due to elevated levels of the phosphate-regulating hormone FGF23. In this paper, we show that Fam20C phosphorylates FGF23 on a Ser-x-Glu motif that lies within a critical region of the hormone. The phosphorylation promotes FGF23 proteolysis by furin by blocking O-glycosylation by polypeptide N-acetylgalactosaminyltransferase 3. Our results have important implications for patients with abnormalities in phosphate homeostasis. The family with sequence similarity 20, member C (Fam20C) has recently been identified as the Golgi casein kinase. Fam20C phosphorylates secreted proteins on Ser-x-Glu/pSer motifs and loss-of-function mutations in the kinase cause Raine syndrome, an often-fatal osteosclerotic bone dysplasia. Fam20C is potentially an upstream regulator of the phosphate-regulating hormone fibroblast growth factor 23 (FGF23), because humans with FAM20C mutations and Fam20C KO mice develop hypophosphatemia due to an increase in full-length, biologically active FGF23. However, the mechanism by which Fam20C regulates FGF23 is unknown. Here we show that Fam20C directly phosphorylates FGF23 on Ser180, within the FGF23 R176XXR179/S180AE subtilisin-like proprotein convertase motif. This phosphorylation event inhibits O-glycosylation of FGF23 by polypeptide N-acetylgalactosaminyltransferase 3 (GalNAc-T3), and promotes FGF23 cleavage and inactivation by the subtilisin-like proprotein convertase furin. Collectively, our results provide a molecular mechanism by which FGF23 is dynamically regulated by phosphorylation, glycosylation, and proteolysis. Furthermore, our findings suggest that cross-talk between phosphorylation and O-glycosylation of proteins in the secretory pathway may be an important mechanism by which secreted proteins are regulated.


Cell Metabolism | 2011

Phosphate incorporation during glycogen synthesis and Lafora disease.

Vincent S. Tagliabracci; Christian Heiss; Chandra Karthik; Christopher J. Contreras; John Glushka; Mayumi Ishihara; Parastoo Azadi; Thomas D. Hurley; Peter J. Roach

Glycogen is a branched polymer of glucose that serves as an energy store. Phosphate, a trace constituent of glycogen, has profound effects on glycogen structure, and phosphate hyperaccumulation is linked to Lafora disease, a fatal progressive myoclonus epilepsy that can be caused by mutations of laforin, a glycogen phosphatase. However, little is known about the metabolism of glycogen phosphate. We demonstrate here that the biosynthetic enzyme glycogen synthase, which normally adds glucose residues to glycogen, is capable of incorporating the β-phosphate of its substrate UDP-glucose at a rate of one phosphate per approximately 10,000 glucoses, in what may be considered a catalytic error. We show that the phosphate in glycogen is present as C2 and C3 phosphomonoesters. Since hyperphosphorylation of glycogen causes Lafora disease, phosphate removal by laforin may thus be considered a repair or damage control mechanism.


Journal of Biological Chemistry | 2010

Genetic Depletion of the Malin E3 Ubiquitin Ligase in Mice Leads to Lafora Bodies and the Accumulation of Insoluble Laforin

Vincent S. Tagliabracci; Dyann M. Segvich; Catalina M. Meyer; Jose M. Irimia; Peter J. Roach

Approximately 90% of cases of Lafora disease, a fatal teenage-onset progressive myoclonus epilepsy, are caused by mutations in either the EPM2A or the EPM2B genes that encode, respectively, a glycogen phosphatase called laforin and an E3 ubiquitin ligase called malin. Lafora disease is characterized by the formation of Lafora bodies, insoluble deposits containing poorly branched glycogen or polyglucosan, in many tissues including skeletal muscle, liver, and brain. Disruption of the Epm2b gene in mice resulted in viable animals that, by 3 months of age, accumulated Lafora bodies in the brain and to a lesser extent in heart and skeletal muscle. Analysis of muscle and brain of the Epm2b−/− mice by Western blotting indicated no effect on the levels of glycogen synthase, PTG (type 1 phosphatase-targeting subunit), or debranching enzyme, making it unlikely that these proteins are targeted for destruction by malin, as has been proposed. Total laforin protein was increased in the brain of Epm2b−/− mice and, most notably, was redistributed from the soluble, low speed supernatant to the insoluble low speed pellet, which now contained 90% of the total laforin. This result correlated with elevated insolubility of glycogen and glycogen synthase. Because up-regulation of laforin cannot explain Lafora body formation, we conclude that malin functions to maintain laforin associated with soluble glycogen and that its absence causes sequestration of laforin to an insoluble polysaccharide fraction where it is functionally inert.


Cell | 2015

A Single Kinase Generates the Majority of the Secreted Phosphoproteome

Vincent S. Tagliabracci; Sandra E. Wiley; Xiao Guo; Lisa N. Kinch; Eric Durrant; Jianzhong Wen; Junyu Xiao; Jixin Cui; Kim B. Nguyen; James L. Engel; Joshua J. Coon; Nick V. Grishin; Lorenzo A. Pinna; David J. Pagliarini; Jack E. Dixon

The existence of extracellular phosphoproteins has been acknowledged for over a century. However, research in this area has been undeveloped largely because the kinases that phosphorylate secreted proteins have escaped identification. Fam20C is a kinase that phosphorylates S-x-E/pS motifs on proteins in milk and in the extracellular matrix of bones and teeth. Here, we show that Fam20C generates the majority of the extracellular phosphoproteome. Using CRISPR/Cas9 genome editing, mass spectrometry, and biochemistry, we identify more than 100 secreted phosphoproteins as genuine Fam20C substrates. Further, we show that Fam20C exhibits broader substrate specificity than previously appreciated. Functional annotations of Fam20C substrates suggest roles for the kinase beyond biomineralization, including lipid homeostasis, wound healing, and cell migration and adhesion. Our results establish Fam20C as the major secretory pathway protein kinase and serve as a foundation for new areas of investigation into the role of secreted protein phosphorylation in human biology and disease.


Trends in Biochemical Sciences | 2013

Secreted protein kinases

Vincent S. Tagliabracci; Lorenzo A. Pinna; Jack E. Dixon

Protein kinases constitute one of the largest gene families and control many aspects of cellular life. In retrospect, the first indication for their existence was reported 130 years ago when the secreted protein, casein, was shown to contain phosphate. Despite its identification as the first phosphoprotein, the responsible kinase has remained obscure. This conundrum was solved with the discovery of a novel family of atypical protein kinases that are secreted and appear to phosphorylate numerous extracellular proteins, including casein. Fam20C, the archetypical member, phosphorylates secreted proteins within Ser-x-Glu/pSer motifs. This discovery has solved a 130-year-old mystery and has shed light on several human disorders of biomineralization.


Journal of Biological Chemistry | 2010

Starch Binding Domain-containing Protein 1/Genethonin 1 Is a Novel Participant in Glycogen Metabolism

Sixin Jiang; Brigitte L. Heller; Vincent S. Tagliabracci; Lanmin Zhai; Jose M. Irimia; Clark D. Wells; Alexander V. Skurat; Peter J. Roach

Stbd1 is a protein of previously unknown function that is most prevalent in liver and muscle, the major sites for storage of the energy reserve glycogen. The protein is predicted to contain a hydrophobic N terminus and a C-terminal CBM20 glycan binding domain. Here, we show that Stbd1 binds to glycogen in vitro and that endogenous Stbd1 locates to perinuclear compartments in cultured mouse FL83B or Rat1 cells. When overexpressed in COSM9 cells, Stbd1 concentrated at enlarged perinuclear structures, co-localized with glycogen, the late endosomal/lysosomal marker LAMP1 and the autophagy protein GABARAPL1. Mutant Stbd1 lacking the N-terminal hydrophobic segment had a diffuse distribution throughout the cell. Point mutations in the CBM20 domain did not change the perinuclear localization of Stbd1, but glycogen was no longer concentrated in this compartment. Stable overexpression of glycogen synthase in Rat1WT4 cells resulted in accumulation of glycogen as massive perinuclear deposits, where a large fraction of the detectable Stbd1 co-localized. Starvation of Rat1WT4 cells for glucose resulted in dissipation of the massive glycogen stores into numerous and much smaller glycogen deposits that retained Stbd1. In vitro, in cells, and in animal models, Stbd1 consistently tracked with glycogen. We conclude that Stbd1 is involved in glycogen metabolism by binding to glycogen and anchoring it to membranes, thereby affecting its cellular localization and its intracellular trafficking to lysosomes.

Collaboration


Dive into the Vincent S. Tagliabracci's collaboration.

Top Co-Authors

Avatar

Jack E. Dixon

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianzhong Wen

University of California

View shared research outputs
Top Co-Authors

Avatar

Junyu Xiao

University of California

View shared research outputs
Top Co-Authors

Avatar

James L. Engel

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jixin Cui

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge