Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vincent T. K. Chow is active.

Publication


Featured researches published by Vincent T. K. Chow.


American Journal of Pathology | 2011

Excessive Neutrophils and Neutrophil Extracellular Traps Contribute to Acute Lung Injury of Influenza Pneumonitis

T. Narasaraju; Edwin Yang; Ramar Perumal Samy; Huey Hian Ng; Wee Peng Poh; Audrey-Ann Liew; Meng Chee Phoon; Nico van Rooijen; Vincent T. K. Chow

Complications of acute respiratory distress syndrome (ARDS) are common among critically ill patients infected with highly pathogenic influenza viruses. Macrophages and neutrophils constitute the majority of cells recruited into infected lungs, and are associated with immunopathology in influenza pneumonia. We examined pathological manifestations in models of macrophage- or neutrophil-depleted mice challenged with sublethal doses of influenza A virus H1N1 strain PR8. Infected mice depleted of macrophages displayed excessive neutrophilic infiltration, alveolar damage, and increased viral load, later progressing into ARDS-like pathological signs with diffuse alveolar damage, pulmonary edema, hemorrhage, and hypoxemia. In contrast, neutrophil-depleted animals showed mild pathology in lungs. The brochoalveolar lavage fluid of infected macrophage-depleted mice exhibited elevated protein content, T1-α, thrombomodulin, matrix metalloproteinase-9, and myeloperoxidase activities indicating augmented alveolar-capillary damage, compared to neutrophil-depleted animals. We provide evidence for the formation of neutrophil extracellular traps (NETs), entangled with alveoli in areas of tissue injury, suggesting their potential link with lung damage. When co-incubated with infected alveolar epithelial cells in vitro, neutrophils from infected lungs strongly induced NETs generation, and augmented endothelial damage. NETs induction was abrogated by anti-myeloperoxidase antibody and an inhibitor of superoxide dismutase, thus implying that NETs generation is induced by redox enzymes in influenza pneumonia. These findings support the pathogenic effects of excessive neutrophils in acute lung injury of influenza pneumonia by instigating alveolar-capillary damage.


Cell | 2011

Distal Airway Stem Cells Yield Alveoli In Vitro and during Lung Regeneration following H1N1 Influenza Infection

Pooja Ashok Kumar; Yuanyu Hu; Yusuke Yamamoto; Neo Boon Hoe; Tay Seok Wei; Dakai Mu; Yan Sun; Lim Siew Joo; Rania Dagher; Elisabeth M. Zielonka; De Yun Wang; Bing Lim; Vincent T. K. Chow; Christopher P. Crum; Wa Xian; Frank McKeon

The extent of lung regeneration following catastrophic damage and the potential role of adult stem cells in such a process remains obscure. Sublethal infection of mice with an H1N1 influenza virus related to that of the 1918 pandemic triggers massive airway damage followed by apparent regeneration. We show here that p63-expressing stem cells in the bronchiolar epithelium undergo rapid proliferation after infection and radiate to interbronchiolar regions of alveolar ablation. Once there, these cells assemble into discrete, Krt5+ pods and initiate expression of markers typical of alveoli. Gene expression profiles of these pods suggest that they are intermediates in the reconstitution of the alveolar-capillary network eradicated by viral infection. The dynamics of this p63-expressing stem cell in lung regeneration mirrors our parallel finding that defined pedigrees of human distal airway stem cells assemble alveoli-like structures in vitro and suggests new therapeutic avenues to acute and chronic airway disease.


International Journal of Infectious Diseases | 2010

The largest outbreak of hand; foot and mouth disease in Singapore in 2008: The role of enterovirus 71 and coxsackievirus A strains

Yan Wu; Andrea Yeo; M.C. Phoon; Eng Lee Tan; Chit Laa Poh; Seng Hock Quak; Vincent T. K. Chow

BACKGROUND During 2008, Singapore experienced its largest ever outbreak of hand, foot and mouth disease (HFMD), resulting in 29686 cases, including four cases of encephalitis and one fatality. METHODS A total of 51 clinical specimens from 43 patients with suspected HFMD at the National University Hospital, Singapore were collected for virus isolation and identification by reverse transcription polymerase chain reaction (RT-PCR) and sequencing. RESULTS Enteroviruses were identified in 34 samples (66.7%), with 11 samples (21.6%) being positive for enterovirus 71 (EV71). Other non-EV71 enteroviruses (including coxsackievirus A4, A6, A10, and A16) were identified in 23 samples (45.1%). The most prevalent virus serotypes were CA6, CA10, and EV71. CA6 and CA10 accounted for 35.3% of all HFMD cases, which may explain the high transmissibility and low fatality that characterized this unprecedented epidemic associated with relatively mild disease. Phylogenetic analyses of 10 circulating EV71 strains indicated that they belonged to two subgenogroups, i.e., B5 (80%) and C2 (20%). The VP1 sequences of the 2008 EV71 strains also exhibited continuous mutations during the outbreak, reflecting the relatively high mutation rate of the EV71 capsid protein, which may have implications for future vaccine development. CONCLUSIONS A safe and effective vaccine against EV71 is certainly warranted in view of its potential neurovirulence and its role in HFMD epidemics of recurring frequency with resultant fatalities in Asia, as well as other parts of the world.


Molecular and Cellular Biology | 2003

Activating Signal Cointegrator 2 Belongs to a Novel Steady-State Complex That Contains a Subset of Trithorax Group Proteins

Young-Hwa Goo; Young Chang Sohn; Dae-Hwan Kim; Seung Whan Kim; Min-Jung Kang; Dong Ju Jung; Eunyee Kwak; Nickolai A. Barlev; Shelley L. Berger; Vincent T. K. Chow; Robert G. Roeder; David O. Azorsa; Paul S. Meltzer; Pan Gil Suh; Eun Joo Song; Kong Joo Lee; Young Chul Lee; Jae Woon Lee

ABSTRACT Many transcription coactivators interact with nuclear receptors in a ligand- and C-terminal transactivation function (AF2)-dependent manner. These include activating signal cointegrator 2 (ASC-2), a recently isolated transcriptional coactivator molecule, which is amplified in human cancers and stimulates transactivation by nuclear receptors and numerous other transcription factors. In this report, we show that ASC-2 belongs to a steady-state complex of approximately 2 MDa (ASC-2 complex [ASCOM]) in HeLa nuclei. ASCOM contains retinoblastoma-binding protein RBQ-3, α/β-tubulins, and trithorax group proteins ALR-1, ALR-2, HALR, and ASH2. In particular, ALR-1/2 and HALR contain a highly conserved 130- to 140-amino-acid motif termed the SET domain, which was recently implicated in histone H3 lysine-specific methylation activities. Indeed, recombinant ALR-1, HALR, and immunopurified ASCOM exhibit very weak but specific H3-lysine 4 methylation activities in vitro, and transactivation by retinoic acid receptor appears to involve ligand-dependent recruitment of ASCOM and subsequent transient H3-lysine 4 methylation of the promoter region in vivo. Thus, ASCOM may represent a distinct coactivator complex of nuclear receptors. Further characterization of ASCOM will lead to a better understanding of how nuclear receptors and other transcription factors mediate transcriptional activation.


JAMA | 2010

2009 Influenza A(H1N1) Seroconversion Rates and Risk Factors Among Distinct Adult Cohorts in Singapore

Mark I. Chen; Vernon J. Lee; Wei-Yen Lim; Ian G. Barr; Raymond T.P. Lin; Gerald Choon-Huat Koh; Jonathan Yap; Lin Cui; Alex R. Cook; Karen L. Laurie; Linda W.L. Tan; Boon Huan Tan; Jimmy Loh; Robert D. Shaw; C. Durrant; Vincent T. K. Chow; Anne Kelso; Kee Seng Chia; Yee Sin Leo

CONTEXT Singapore experienced a single epidemic wave of 2009 influenza A(H1N1) with epidemic activity starting in late June 2009 and peaking in early August before subsiding within a month. OBJECTIVE To compare the risk and factors associated with H1N1 seroconversion in different adult cohorts. DESIGN, SETTING, AND PARTICIPANTS A study with serial serological samples from 4 distinct cohorts: general population (n = 838), military personnel (n = 1213), staff from an acute care hospital (n = 558), and staff as well as residents from long-term care facilities (n = 300) from June 22, 2009, to October 15, 2009. Hemagglutination inhibition results of serum samples taken before, during, and after the epidemic and data from symptom questionnaires are presented. MAIN OUTCOME MEASURES A 4-fold or greater increase in titer between any of the 3 serological samples was defined as evidence of H1N1 seroconversion. RESULTS Baseline titers of 40 or more were observed in 22 members (2.6%; 95% confidence interval [CI], 1.7%-3.9%) of the community, 114 military personnel (9.4%; 95% CI, 7.9%-11.2%), 37 hospital staff (6.6%; 95% CI, 4.8%-9.0%), and 20 participants from long-term care facilities (6.7%; 95% CI, 4.4%-10.1%). In participants with 1 or more follow-up serum samples, 312 military personnel (29.4%; 95% CI, 26.8%-32.2%) seroconverted compared with 98 community members (13.5%; 95% CI, 11.2%-16.2%), 35 hospital staff (6.5%; 95% CI, 4.7%-8.9%), and only 3 long-term care participants (1.2%; 95% CI, 0.4%-3.5%). Increased frequency of seroconversion was observed for community participants from households in which 1 other member seroconverted (adjusted odds ratio [OR], 3.32; 95% CI, 1.50-7.33), whereas older age was associated with reduced odds of seroconversion (adjusted OR, 0.77 per 10 years; 95% CI, 0.64-0.93). Higher baseline titers were associated with decreased frequency of seroconversion in community (adjusted OR for every doubling of baseline titer, 0.48; 95% CI, 0.27-0.85), military (adjusted OR, 0.71; 95% CI, 0.61-0.81), and hospital staff cohorts (adjusted OR, 0.50; 95% CI, 0.26-0.93). CONCLUSION Following the June-September 2009 wave of 2009 influenza A(H1N1), 13% of the community participants seroconverted, and most of the adult population likely remained susceptible.


Biochemical Journal | 2004

The SARS coronavirus nucleocapsid protein induces actin reorganization and apoptosis in COS-1 cells in the absence of growth factors

Milan Surjit; Boping Liu; Shahid Jameel; Vincent T. K. Chow; Sunil K. Lal

In March 2003, a novel coronavirus was isolated from patients exhibiting atypical pneumonia, and was subsequently proven to be the causative agent of the disease now referred to as SARS (severe acute respiratory syndrome). The complete genome of the SARS-CoV (SARS coronavirus) has since been sequenced. The SARS-CoV nucleocapsid (SARS-CoV N) protein shares little homology with other members of the coronavirus family. In the present paper, we show that SARS-CoV N is capable of inducing apoptosis of COS-1 monkey kidney cells in the absence of growth factors by down-regulating ERK (extracellular-signal-regulated kinase), up-regulating JNK (c-Jun N-terminal kinase) and p38 MAPK (mitogen-activated protein kinase) pathways, and affecting their downstream effectors. SARS-CoV N expression also down-regulated phospho-Akt and Bcl-2 levels, and activated caspases 3 and 7. However, apoptosis was independent of the p53 and Fas signalling pathways. Furthermore, activation of the p38 MAPK pathway was found to induce actin reorganization in cells devoid of growth factors. At the cytoskeletal level, SARS-CoV N down-regulated FAK (focal adhesion kinase) activity and also down-regulated fibronectin expression. This is the first report showing the ability of the N protein of SARS-CoV to induce apoptosis and actin reorganization in mammalian cells under stressed conditions.


PLOS Medicine | 2006

Human Monoclonal Antibody Combination against SARS Coronavirus: Synergy and Coverage of Escape Mutants

Jan ter Meulen; Edward Norbert van den Brink; Leo L.M. Poon; Wilfred E. Marissen; Cynthia Sau-Wai Leung; Freek Cox; Chung Y. Cheung; Arjen Q. Bakker; Johannes Antonie Bogaards; Els van Deventer; Wolfgang Preiser; Hans Wilhelm Doerr; Vincent T. K. Chow; John de Kruif; J. S. M. Peiris; Jaap Goudsmit

Background Experimental animal data show that protection against severe acute respiratory syndrome coronavirus (SARS-CoV) infection with human monoclonal antibodies (mAbs) is feasible. For an effective immune prophylaxis in humans, broad coverage of different strains of SARS-CoV and control of potential neutralization escape variants will be required. Combinations of virus-neutralizing, noncompeting mAbs may have these properties. Methods and Findings Human mAb CR3014 has been shown to completely prevent lung pathology and abolish pharyngeal shedding of SARS-CoV in infected ferrets. We generated in vitro SARS-CoV variants escaping neutralization by CR3014, which all had a single P462L mutation in the glycoprotein spike (S) of the escape virus. In vitro experiments confirmed that binding of CR3014 to a recombinant S fragment (amino acid residues 318–510) harboring this mutation was abolished. We therefore screened an antibody-phage library derived from blood of a convalescent SARS patient for antibodies complementary to CR3014. A novel mAb, CR3022, was identified that neutralized CR3014 escape viruses, did not compete with CR3014 for binding to recombinant S1 fragments, and bound to S1 fragments derived from the civet cat SARS-CoV-like strain SZ3. No escape variants could be generated with CR3022. The mixture of both mAbs showed neutralization of SARS-CoV in a synergistic fashion by recognizing different epitopes on the receptor-binding domain. Dose reduction indices of 4.5 and 20.5 were observed for CR3014 and CR3022, respectively, at 100% neutralization. Because enhancement of SARS-CoV infection by subneutralizing antibody concentrations is of concern, we show here that anti-SARS-CoV antibodies do not convert the abortive infection of primary human macrophages by SARS-CoV into a productive one. Conclusions The combination of two noncompeting human mAbs CR3014 and CR3022 potentially controls immune escape and extends the breadth of protection. At the same time, synergy between CR3014 and CR3022 may allow for a lower total antibody dose to be administered for passive immune prophylaxis of SARS-CoV infection.


Journal of Clinical Microbiology | 2002

Direct Detection of Enterovirus 71 (EV71) in Clinical Specimens from a Hand, Foot, and Mouth Disease Outbreak in Singapore by Reverse Transcription-PCR with Universal Enterovirus and EV71-Specific Primers

Sunita Singh; Vincent T. K. Chow; M.C. Phoon; K.P. Chan; Chit Laa Poh

ABSTRACT A recent outbreak of hand, foot, and mouth disease in Singapore in 2000 affected several thousand children and resulted in four deaths. The aim of this study was to determine the applicability of reverse transcription-PCR (RT-PCR) with universal pan-enterovirus primers and enterovirus 71 (EV71) type-specific primers for the direct detection of enteroviruses in clinical specimens derived from this outbreak. With the universal primers, EV71 RNA sequences were successfully detected by RT-PCR and direct sequencing in 71% of positive specimens. Three pairs of EV71 type-specific primers were evaluated for rapid detection of EV71 directly from clinical specimens and cell culture isolates. By using a seminested RT-PCR strategy, specific identification of EV71 sequences directly in clinical specimens was achieved, with a detection rate of 53%. In contrast, cell culture could isolate EV71 in only 20% of positive specimens. EV71 was detected directly from brain, heart, and lung specimens of two deceased siblings. Although more than one type of enterovirus was identified in clinical specimens from this outbreak, 90% of the enteroviruses were confirmed as EV71. The data demonstrate the clinical applicability of pan-enterovirus and seminested RT-PCR for the detection of EV71 RNA directly from clinical specimens in an outbreak situation.


Journal of Virology | 2012

A Non-Mouse-Adapted Enterovirus 71 (EV71) Strain Exhibits Neurotropism, Causing Neurological Manifestations in a Novel Mouse Model of EV71 Infection

Wei Xin Khong; Benedict Yan; Huimin Yeo; Eng Lee Tan; Jia Jun Lee; Jowin K. W. Ng; Vincent T. K. Chow; Sylvie Alonso

ABSTRACT Enterovirus 71 (EV71) is a neurotropic pathogen that has been consistently associated with the severe neurological forms of hand, foot, and mouth disease. The lack of a relevant animal model has hampered our understanding of EV71 pathogenesis, in particular the route and mode of viral dissemination. It has also hindered the development of effective prophylactic and therapeutic approaches, making EV71 one of the most pressing public health concerns in Southeast Asia. Here we report a novel mouse model of EV71 infection. We demonstrate that 2-week-old and younger immunodeficient AG129 mice, which lack type I and II interferon receptors, are susceptible to infection with a non-mouse-adapted EV71 strain via both the intraperitoneal (i.p.) and oral routes of inoculation. The infected mice displayed progressive limb paralysis prior to death. The dissemination of the virus was dependent on the route of inoculation but eventually resulted in virus accumulation in the central nervous systems of both animal groups, indicating a clear neurotropism of the virus. Histopathological examination revealed massive damage in the limb muscles, brainstem, and anterior horn areas. However, the minute amount of infectious viral particles in the limbs from orally infected animals argues against a direct viral cytopathic effect in this tissue and suggests that limb paralysis is a consequence of EV71 neuroinvasion. Together, our observations support that young AG129 mice display polio-like neuropathogenesis upon infection with a non-mouse-adapted EV71 strain, making this mouse model relevant for EV71 pathogenesis studies and an attractive platform for EV71 vaccine and drug testing.


Journal of Biological Chemistry | 2006

The nucleocapsid protein of severe acute respiratory syndrome-coronavirus inhibits the activity of cyclin-cyclin-dependent kinase complex and blocks S phase progression in mammalian cells

Milan Surjit; Boping Liu; Vincent T. K. Chow; Sunil K. Lal

Deregulation of the cell cycle is a common strategy employed by many DNA and RNA viruses to trap and exploit the host cell machinery toward their own benefit. In many coronaviruses, the nucleocapsid protein (N protein) has been shown to inhibit cell cycle progression although the mechanism behind this is poorly understood. The N protein of severe acute respiratory syndrome-coronavirus (SARS-CoV) bears signature motifs for binding to cyclin and phosphorylation by cyclin-dependent kinase (CDK) and has recently been reported by us to get phosphorylated by the cyclin-CDK complex (Surjit, M., Kumar, R., Mishra, R. N., Reddy, M. K., Chow, V. T., and Lal, S. K. (2005) J. Virol. 79, 11476–11486). In the present study, we prove that the N protein of SARS-CoV can inhibit S phase progression in mammalian cell lines. N protein expression was found to directly inhibit the activity of the cyclin-CDK complex, resulting in hypophosphorylation of retinoblastoma protein with a concomitant down-regulation in E2F1-mediated transactivation. Coexpression of E2F1 under such conditions could restore the expression of S phase genes. Analysis of RXL and CDK phosphorylation mutant N protein identified the mechanism of inhibition of CDK4 and CDK2 activity to be different. Whereas N protein could directly bind to cyclin D and inhibit the activity of CDK4-cyclin D complex; inhibition of CDK2 activity appeared to be achieved in two different ways: indirectly by down-regulation of protein levels of CDK2, cyclin E, and cyclin A and by direct binding of N protein to CDK2-cyclin complex. Down-regulation of E2F1 targets was also observed in SARS-CoV-infected VeroE6 cells. These data suggest that the S phase inhibitory activity of the N protein may have major significance during viral pathogenesis.

Collaboration


Dive into the Vincent T. K. Chow's collaboration.

Top Co-Authors

Avatar

Kishore R. Sakharkar

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ramar Perumal Samy

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

M.C. Phoon

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Gopalakrishnakone

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sylvie Alonso

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Jimmy Kwang

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Meng Chee Phoon

National University of Singapore

View shared research outputs
Researchain Logo
Decentralizing Knowledge