Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vincent van de Ven is active.

Publication


Featured researches published by Vincent van de Ven.


Human Brain Mapping | 2004

Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest

Vincent van de Ven; Elia Formisano; David Prvulovic; Christian H. Roeder; David Edmund Johannes Linden

Cortical functional connectivity, as indicated by the concurrent spontaneous activity of spatially segregated regions, is being studied increasingly because it may determine the reaction of the brain to external stimuli and task requirements and it is reportedly altered in many neurological and psychiatric disorders. In functional magnetic resonance imaging (fMRI), such functional connectivity is investigated commonly by correlating the time course of a chosen “seed voxel” with the remaining voxel time courses in a voxel‐by‐voxel manner. This approach is biased by the actual choice of the seed voxel, however, because it only shows functional connectivity for the chosen brain region while ignoring other potentially interesting patterns of coactivation. We used spatial independent component analysis (sICA) to assess cortical functional connectivity maps from resting state data. SICA does not depend on any chosen temporal profile of local brain activity. We hypothesized that sICA would be able to find functionally connected brain regions within sensory and motor regions in the absence of task‐related brain activity. We also investigated functional connectivity patterns of several parietal regions including the superior parietal cortex and the posterior cingulate gyrus. The components of interest were selected in an automated fashion using predefined anatomical volumes of interest. SICA yielded connectivity maps of bilateral auditory, motor and visual cortices. Moreover, it showed that prefrontal and parietal areas are also functionally connected within and between hemispheres during the resting state. These connectivity maps showed an extremely high degree of consistency in spatial, temporal, and frequency parameters within and between subjects. These results are discussed in the context of the recent debate on the functional relevance of fluctuations of neural activity in the resting state. Hum. Brain Mapp. 22:165–178, 2004.


Neuropsychologia | 2005

Are numbers special? The comparison systems of the human brain investigated by fMRI.

R. Cohen Kadosh; Avishai Henik; Orly Rubinsten; Harald M. Mohr; Halit Dori; Vincent van de Ven; Marco Zorzi; Talma Hendler; Rainer Goebel; David Edmund Johannes Linden

Many studies have suggested that the intraparietal sulcus (IPS), particularly in the dominant hemisphere, is crucially involved in numerical comparisons. However, this parietal structure has been found to be involved in other tasks that require spatial processing or visuospatial attention as well. fMRI was used to investigate three different magnitude comparisons in an event-related-block design: (a) Which digit is larger in numerical value (e.g., 2 or 5)? (b) Which digit is brighter (e.g., 3 or 3)? (c) Which digit is physically larger (e.g., 3 or 3)? Results indicate a widespread cortical network including a bilateral activation of the intraparietal sulci for all different comparisons. However, by computing contrasts of brain activation between the respective comparison conditions and applying a cortical distance effect as an additional criterion, number-specific activation was revealed in left IPS and right temporal regions. These results indicate that there are both commonalities and differences in the spatial layout of the brain systems for numerical and physical comparisons and that especially the left IPS, while involved in magnitude comparison in general, plays a special role in number comparison.


Schizophrenia Research | 2010

Resting-state functional network correlates of psychotic symptoms in schizophrenia

Anna Rotarska-Jagiela; Vincent van de Ven; Viola Oertel-Knöchel; Peter J. Uhlhaas; Kai Vogeley; David Edmund Johannes Linden

Schizophrenia has been associated with aberrant intrinsic functional organization of the brain but the relationship of such deficits to psychopathology is unclear. In this study, we investigated associations between resting-state networks and individual psychopathology in sixteen patients with paranoid schizophrenia and sixteen matched healthy control participants. We estimated whole-brain functional connectivity of multiple networks using a combination of spatial independent component analysis and multiple regression analysis. Five networks (default-mode, left and right fronto-parietal, left fronto-temporal and auditory networks) were selected for analysis based on their involvement in neuropsychological models of psychosis. Between-group comparisons and correlations to psychopathology ratings were performed on both spatial (connectivity distributions) and temporal features (power-spectral densities of temporal frequencies below 0.06 Hz). Schizophrenia patients showed aberrant functional connectivity in the default-mode network, which correlated with severity of hallucinations and delusions, and decreased hemispheric separation of fronto-parietal activity, which correlated with disorganization symptoms. Furthermore, the severity of positive symptoms correlated with functional connectivity of fronto-temporal and auditory networks. Finally, default-mode and auditory networks showed increased spectral power of low frequency oscillations, which correlated with positive symptom severity. These results are in line with findings from studies that investigated the neural correlates of positive symptoms and suggest that psychopathology is associated with aberrant intrinsic organization of functional brain networks in schizophrenia.


NeuroImage | 2005

The spatiotemporal pattern of auditory cortical responses during verbal hallucinations.

Vincent van de Ven; Elia Formisano; Christian H. Röder; David Prvulovic; Robert A. Bittner; Matthias G. Dietz; Daniela Hubl; Thomas Dierks; Andrea Federspiel; Fabrizio Esposito; Francesco Di Salle; Bernadette M. Jansma; Rainer Goebel; David Edmund Johannes Linden

Functional magnetic resonance imaging (fMRI) studies can provide insight into the neural correlates of hallucinations. Commonly, such studies require self-reports about the timing of the hallucination events. While many studies have found activity in higher-order sensory cortical areas, only a few have demonstrated activity of the primary auditory cortex during auditory verbal hallucinations. In this case, using self-reports as a model of brain activity may not be sensitive enough to capture all neurophysiological signals related to hallucinations. We used spatial independent component analysis (sICA) to extract the activity patterns associated with auditory verbal hallucinations in six schizophrenia patients. SICA decomposes the functional data set into a set of spatial maps without the use of any input function. The resulting activity patterns from auditory and sensorimotor components were further analyzed in a single-subject fashion using a visualization tool that allows for easy inspection of the variability of regional brain responses. We found bilateral auditory cortex activity, including Heschls gyrus, during hallucinations of one patient, and unilateral auditory cortex activity in two more patients. The associated time courses showed a large variability in the shape, amplitude, and time of onset relative to the self-reports. However, the average of the time courses during hallucinations showed a clear association with this clinical phenomenon. We suggest that detection of this activity may be facilitated by examining hallucination epochs of sufficient length, in combination with a data-driven approach.


Psychiatry Research-neuroimaging | 2005

Functional activation imaging in aging and dementia

David Prvulovic; Vincent van de Ven; Alexander T. Sack; Konrad Maurer; David Edmund Johannes Linden

With life expectancy increasing continuously, the effects of neurodegeneration on brain function are a topic of ever increasing importance. Thus there is a need for tools and models that probe both the functional consequences of neurodegenerative processes and compensatory mechanisms that might occur. As neurodegenerative burden and compensatory mechanisms may change over time, these tools will ideally be applied multiple times over the lifespan. Specifically, in order to elucidate whether brain-activation patterns in Alzheimers disease (AD) and in healthy aging follow general rules in the context of degeneration and compensation, it is necessary to compare functional brain-activation patterns during different states of neurodegeneration. This article integrates the findings of functional activation studies at different stages of neurodegeneration: in healthy aging, in subjects at high risk of developing dementia, in subjects with mild cognitive impairment (MCI), and in patients suffering from AD. We review existing theoretical models that aim to explain the underlying mechanisms of functional activation changes in aging and dementia, and we propose an integrative account, which allows for different neural response patterns depending on the amount of neuronal damage and the recruitment of compensatory pathways.


The Journal of Neuroscience | 2010

Reduced laterality as a trait marker of schizophrenia--evidence from structural and functional neuroimaging.

Viola Oertel; Christian Knöchel; Anna Rotarska-Jagiela; Ralf Schönmeyer; Michael Lindner; Vincent van de Ven; Corinna Haenschel; Peter J. Uhlhaas; Konrad Maurer; David Edmund Johannes Linden

Laterality is a characteristic principle of the organization of the brain systems for language, and reduced hemispheric asymmetry has been considered a risk factor for schizophrenia. Here we sought support for the risk factor hypothesis by investigating whether reduced asymmetry of temporal lobe structure and function is also present in unaffected relatives. Sixteen schizophrenia patients, 16 age-matched first-degree relatives, and 15 healthy controls underwent high-resolution three-dimensional anatomical imaging and functional magnetic resonance imaging during auditory stimulation. Both the overall auditory cortex and planum temporale volumes and the lateralization to the left hemisphere were markedly reduced in patients. The decrease of lateralization correlated with increased severity of symptoms. In addition, both the overall functional activation in response to auditory stimulation and its asymmetry were reduced in the patients. Relatives had intermediate values between patients and controls on both structural and functional measures. This study provides added support for the idea that reduced hemispheric asymmetry is a biological risk factor for schizophrenia.


NeuroImage | 2012

Interhemispheric hypoconnectivity in schizophrenia: Fiber integrity and volume differences of the corpus callosum in patients and unaffected relatives

Christian Knöchel; Viola Oertel-Knöchel; Ralf Schönmeyer; Anna Rotarska-Jagiela; Vincent van de Ven; David Prvulovic; Corinna Haenschel; Peter J. Uhlhaas; Johannes Pantel; Harald Hampel; David Edmund Johannes Linden

Changes in hemispheric asymmetry and inter-hemispheric connectivity have been reported in schizophrenia. However, the genetic contribution to these alterations is still unclear. In the current study, we applied an automatic segmentation method to structural MRI and diffusion tensor imaging (DTI) data and examined volume and fiber integrity of the corpus callosum (CC), the main interhemispheric fiber tract, in 16 chronic schizophrenia (SZ) patients, matched first degree relatives and controls. SZ patients and relatives had smaller CC volumes than controls, particularly in the posterior genu, isthmus and splenium. Fractional anisotropy (FA), an indicator of fiber integrity, was reduced in patients and relatives in the whole CC, the inferior genu, the superior genu and the isthmus. Correspondingly, the mean diffusivity (MD) values of the whole CC and the isthmus were higher in patients and their unaffected relatives, indicating decreased compactness and increased intercellular space. Relatives had intermediate values in the volumetric and fiber integrity measurements between patients and controls. Lower CC volume and fiber integrity in SZ patients were associated with more severe auditory hallucinations. These results support the connectivity hypothesis of SZ (Friston, 1998) and particularly highlight the altered interhemispheric connectivity, which appears to be a genetic feature of SZ risk.


Cerebral Cortex | 2011

The Brain’s Voices: Comparing Nonclinical Auditory Hallucinations and Imagery

David Edmund Johannes Linden; Katy Thornton; Carissa N. Kuswanto; Stephen J. Johnston; Vincent van de Ven; Michael C. Jackson

Although auditory verbal hallucinations are often thought to denote mental illness, the majority of voice hearers do not satisfy the criteria for a psychiatric disorder. Here, we report the first functional imaging study of such nonclinical hallucinations in 7 healthy voice hearers comparing them with auditory imagery. The human voice area in the superior temporal sulcus was activated during both hallucinations and imagery. Other brain areas supporting both hallucinations and imagery included fronto temporal language areas in the left hemisphere and their contralateral homologues and the supplementary motor area (SMA). Hallucinations are critically distinguished from imagery by lack of voluntary control. We expected this difference to be reflected in the relative timing of prefrontal and sensory areas. Activity of the SMA indeed preceded that of auditory areas during imagery, whereas during hallucinations, the 2 processes occurred instantaneously. Voluntary control was thus represented in the relative timing of prefrontal and sensory activation, whereas the sense of reality of the sensory experience may be a product of the voice area activation. Our results reveal mechanisms of the generation of sensory experience in the absence of external stimulation and suggest new approaches to the investigation of the neurobiology of psychopathology.


Psychotherapy and Psychosomatics | 2007

Pain response in depersonalization: A functional imaging study using hypnosis in healthy subjects

Christian H. Röder; Matthias Michal; Gerd Overbeck; Vincent van de Ven; David Edmund Johannes Linden

Background: Depersonalization (DP) is characterized by persistent or recurrent episodes of detachment from one’s self with reduced pain perception being a common feature. Alterations in the body schema similar to the cortico-limbic disconnection syndrome of pain asymbolia are suggested to be responsible for DP. In this study we used hypnosis to induce DP in healthy subjects and to examine neural patterns of pain perception in the state of DP by means of functional magnetic resonance imaging (fMRI). Methods: Pain perception was investigated in 7 healthy subjects with high susceptibility to hypnosis in three different mental states: waking state (N-W), hypnotic relaxation (H-R) and hypnotic DP (H-DP). Pain was induced with electrical stimulation to the median nerve at the right wrist. fMRI measurements were performed during all states. Results: Nociceptive stimuli led to an activation of the well described pain network including somatosensory and insular regions and the cerebellum. Activation was markedly reduced in the contralateral somatosensory cortex, parietal cortex (Brodmann area 40, BA40), prefrontal cortex (BA9), putamen and the ipsilateral amygdala during H-DP. Subjects also reported a significant decrease in pain intensity from N-W to H-DP. Conclusion: Pain response during H-DP was reduced in sensory and affective pain-related areas, reflecting the diminished intensity of the perceived pain. Moreover, a network of cortical and subcortical areas that have been implicated in the perception of the own body was less responsive during DP, which might point to a specific neural mechanism underlying the ‘out-of-body’ experience. Although the small number of subjects does not allow a generalization of our findings, H-DP seems to be a promising tool for the investigation of psychological and biological mechanisms of self-inflicted injuries as well as the mind-body interplay within the realm of psychosomatic disorders.


Journal of Behavior Therapy and Experimental Psychiatry | 2001

Another white christmas: fantasy proneness and reports of 'hallucinatory experiences' in undergraduate students.

Harald Merckelbach; Vincent van de Ven

In the current experiment, 44 undergraduate students were asked to listen to white noise and instructed to press a button when they believed hearing a recording of Bing Crosbys White Christmas without this record actually being presented. Fourteen participants (32%) pressed the button at least once. These participants had higher scores on fantasy proneness and the Launay-Slade Hallucination Scale (LSHS) compared to participants without hallucinatory reports. Both groups did not differ in terms of imagery vividness or sensitivity to social demands. Logistic regression suggested that fantasy proneness is a better predictor of hallucinatory reports than are LSHS scores. This might imply that hallucinatory reports obtained during the White Christmas test reflect a non-specific preference for odd items rather than schizophrenia-like, internal experiences.

Collaboration


Dive into the Vincent van de Ven's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Prvulovic

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Silke Matura

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Christian Knöchel

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Konrad Maurer

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge