Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vincentius Gerardus Henricus Eijsink is active.

Publication


Featured researches published by Vincentius Gerardus Henricus Eijsink.


Bioorganic & Medicinal Chemistry | 2002

Psammaplin A, a chitinase inhibitor isolated from the Fijian marine sponge Aplysinella rhax.

Jioji N. Tabudravu; Vincentius Gerardus Henricus Eijsink; G.W. Gooday; Marcel Jaspars; David Komander; M. Legg; B. Synstad; D.M.F. van Aalten

Several brominated tyrosine derived compounds, psammaplins A (1), K (2) and L (3) as well as bisaprasin (4) were isolated from the Fijian marine sponge Aplysinella rhax during a bioassay guided isolation protocol. Their structures were determined using NMR and MS techniques. Psammaplin A was found to moderately inhibit chitinase B from Serratia marcescens, the mode of inhibition being non-competitive. Crystallographic studies suggest that a disordered psammaplin A molecule is bound near the active site. Interestingly, psammaplin A was found to be a potent antifungal agent.


Applied and Environmental Microbiology | 2012

Two SusD-Like Proteins Encoded within a Polysaccharide Utilization Locus of an Uncultured Ruminant Bacteroidetes Phylotype Bind Strongly to Cellulose

Alasdair MacKenzie; P. B. Pope; H. Pedersen; Rajesh Gupta; Mark Morrison; Wgt Willats; Vincentius Gerardus Henricus Eijsink

ABSTRACT We demonstrate that two characteristic Sus-like proteins encoded within a polysaccharide utilization locus (PUL) bind strongly to cellulosic substrates and interact with plant primary cell walls. This shows associations between uncultured Bacteroidetes-affiliated lineages and cellulose in the rumen and thus presents new PUL-derived targets to pursue regarding plant biomass degradation.


Current Opinion in Structural Biology | 2017

Structural diversity of lytic polysaccharide monooxygenases

Gustav Vaaje-Kolstad; Zarah Forsberg; Jennifer S. M. Loose; Bastien Bissaro; Vincentius Gerardus Henricus Eijsink

Lytic polysaccharide monooxygenases (LPMOs) catalyze the oxidative cleavage of glycosidic bonds and represent a promising resource for development of industrial enzyme cocktails for biomass processing. LPMOs show high sequence and modular diversity and are known, so far, to cleave insoluble substrates such as cellulose, chitin and starch, as well as hemicelluloses such as beta-glucan, xyloglucan and xylan. All LPMOs share a catalytic histidine brace motif to bind copper, but differ strongly when it comes to the nature and arrangement of residues on the substrate-binding surface. In recent years, the number of available LPMO structures has increased rapidly, including the first structure of an enzyme-substrate complex. The insights gained from these structures is reviewed below.


Applied and Environmental Microbiology | 2016

A Lytic Polysaccharide Monooxygenase with Broad Xyloglucan Specificity from the Brown-Rot Fungus Gloeophyllum trabeum and Its Action on Cellulose-Xyloglucan Complexes

Yuka Kojima; Anikó Várnai; Takuya Ishida; Naoki Sunagawa; Dejan Petrovic; Kiyohiko Igarashi; Jody Jellison; Barry Goodell; Gry Alfredsen; Bjørge Westereng; Vincentius Gerardus Henricus Eijsink; Makoto Yoshida

Fungi secrete a set of glycoside hydrolases and lytic polysaccharide monooxygenases (LPMOs) to degrade plant polysaccharides. Brown-rot fungi, such as Gloeophyllum trabeum , tend to have few LPMOs and information on these enzymes is scarce. The genome of G. trabeum encodes four AA9 LPMOs, whose coding sequences were amplified from cDNA. Due to alternative splicing, two variants of Gt LPMO9A seem to be produced, a single domain variant, Gt LPMO9A-1, and a longer variant, Gt LPMO9A-2, which contains a C-terminal domain comprising approximately 55 residues without a predicted function. We have overexpressed the phylogenetically distinct Gt LPMO9A-2 in Pichia pastoris and investigated its properties. Standard analyses, using HPAEC-PAD and MS, showed that Gt LPMO9A-2 is active on cellulose, carboxymethylcellulose and xyloglucan. Importantly, compared to other known xyloglucan-active LPMOs, Gt LPMO9A-2 has broad specificity, cleaving at any position along the β-glucan backbone of xyloglucan, regardless of substitutions. Using dynamic viscosity measurements to compare the hemicellulolytic action of Gt LPMO9A-2 to that of a well-characterized hemicellulolytic LPMO, Nc LPMO9C from Neurospora crassa , revealed that Gt LPMO9A-2 is more efficient in depolymerizing xyloglucan. These measurments also revealed minor activity on glucomannan that could not be detected by the analysis of soluble products by HPAEC-PAD and MS and that was lower than the activity of Nc LPMO9C. Experiments with co-polymeric substrates showed an inhibitory effect of hemicellulose-coating on cellulolytic LPMO activity and did not reveal additional activities of Gt LPMO9A-2. These results provide insight into the LPMO-potential of G. trabeum and provide a novel sensitive method, measurement of dynamic viscosity, for monitoring LPMO activity. Importance Currently, there are only a few methods available to analyze end-products of lytic polysaccharide monooxygenase (LPMO) activity, the most common ones being liquid chromatography and mass spectrometry. Here we present an alternative and sensitive method based on measurement of dynamic viscosity, for real-time continuous monitoring of LPMO activity in the presence of water-soluble hemicelluloses such as xyloglucan. We have used both this novel and existing analytical methods to characterize a xyloglucan-active LPMO from a brown rot fungus. This enzyme, Gt LPMO9A-2, differs from previously characterized LPMOs, in having broad substrate specificity, enabling almost random cleavage of the xyloglucan backbone. Gt LPMO9A-2 acts preferentially on free xyloglucan, suggesting a preference for xyloglucan chains that tether cellulose fibres together. The xyloglucan-degrading potential of Gt LPMO9A-2 suggests a role in decreasing wood strength at the initial stage of brown-rot, through degradation of the primary cell wall.ABSTRACT Fungi secrete a set of glycoside hydrolases and lytic polysaccharide monooxygenases (LPMOs) to degrade plant polysaccharides. Brown-rot fungi, such as Gloeophyllum trabeum, tend to have few LPMOs, and information on these enzymes is scarce. The genome of G. trabeum encodes four auxiliary activity 9 (AA9) LPMOs (GtLPMO9s), whose coding sequences were amplified from cDNA. Due to alternative splicing, two variants of GtLPMO9A seem to be produced, a single-domain variant, GtLPMO9A-1, and a longer variant, GtLPMO9A-2, which contains a C-terminal domain comprising approximately 55 residues without a predicted function. We have overexpressed the phylogenetically distinct GtLPMO9A-2 in Pichia pastoris and investigated its properties. Standard analyses using high-performance anion-exchange chromatography–pulsed amperometric detection (HPAEC-PAD) and mass spectrometry (MS) showed that GtLPMO9A-2 is active on cellulose, carboxymethyl cellulose, and xyloglucan. Importantly, compared to other known xyloglucan-active LPMOs, GtLPMO9A-2 has broad specificity, cleaving at any position along the β-glucan backbone of xyloglucan, regardless of substitutions. Using dynamic viscosity measurements to compare the hemicellulolytic action of GtLPMO9A-2 to that of a well-characterized hemicellulolytic LPMO, NcLPMO9C from Neurospora crassa revealed that GtLPMO9A-2 is more efficient in depolymerizing xyloglucan. These measurements also revealed minor activity on glucomannan that could not be detected by the analysis of soluble products by HPAEC-PAD and MS and that was lower than the activity of NcLPMO9C. Experiments with copolymeric substrates showed an inhibitory effect of hemicellulose coating on cellulolytic LPMO activity and did not reveal additional activities of GtLPMO9A-2. These results provide insight into the LPMO potential of G. trabeum and provide a novel sensitive method, a measurement of dynamic viscosity, for monitoring LPMO activity. IMPORTANCE Currently, there are only a few methods available to analyze end products of lytic polysaccharide monooxygenase (LPMO) activity, the most common ones being liquid chromatography and mass spectrometry. Here, we present an alternative and sensitive method based on measurement of dynamic viscosity for real-time continuous monitoring of LPMO activity in the presence of water-soluble hemicelluloses, such as xyloglucan. We have used both these novel and existing analytical methods to characterize a xyloglucan-active LPMO from a brown-rot fungus. This enzyme, GtLPMO9A-2, differs from previously characterized LPMOs in having broad substrate specificity, enabling almost random cleavage of the xyloglucan backbone. GtLPMO9A-2 acts preferentially on free xyloglucan, suggesting a preference for xyloglucan chains that tether cellulose fibers together. The xyloglucan-degrading potential of GtLPMO9A-2 suggests a role in decreasing wood strength at the initial stage of brown rot through degradation of the primary cell wall.


Applied and Environmental Microbiology | 2015

A polysaccharide utilization locus from an uncultured bacteroidetes phylotype suggests ecological adaptation and substrate versatility.

Alasdair MacKenzie; Adrian E. Naas; Stjepan Krešimir Kračun; Julia Schückel; Jonatan U. Fangel; Jane Wittrup Agger; Wgt Willats; Vincentius Gerardus Henricus Eijsink; P. B. Pope

ABSTRACT Recent metagenomic analyses have identified uncultured bacteria that are abundant in the rumen of herbivores and that possess putative biomass-converting enzyme systems. Here we investigate the saccharolytic capabilities of a polysaccharide utilization locus (PUL) that has been reconstructed from an uncultured Bacteroidetes phylotype (SRM-1) that dominates the rumen microbiome of Arctic reindeer. Characterization of the three PUL-encoded outer membrane glycoside hydrolases was performed using chromogenic substrates for initial screening, followed by detailed analyses of products generated from selected substrates, using high-pressure anion-exchange chromatography with electrochemical detection. Two glycoside hydrolase family 5 (GH5) endoglucanases (GH5_g and GH5_h) demonstrated activity against β-glucans, xylans, and xyloglucan, whereas GH5_h and the third enzyme, GH26_i, were active on several mannan substrates. Synergy experiments examining different combinations of the three enzymes demonstrated limited activity enhancement on individual substrates. Binding analysis of a SusE-positioned lipoprotein revealed an affinity toward β-glucans and, to a lesser extent, mannan, but unlike the two SusD-like lipoproteins previously characterized from the same PUL, binding to cellulose was not observed. Overall, these activities and binding specificities correlated well with the glycan content of the reindeer rumen, which was determined using comprehensive microarray polymer profiling and showed an abundance of various hemicellulose glycans. The substrate versatility of this single PUL putatively expands our perceptions regarding PUL machineries, which so far have demonstrated gene organization that suggests one cognate PUL for each substrate type. The presence of a PUL that possesses saccharolytic activity against a mixture of abundantly available polysaccharides supports the dominance of SRM-1 in the Svalbard reindeer rumen microbiome.


Scientific Reports | 2017

Structure and function of a broad-specificity chitin deacetylase from Aspergillus nidulans FGSC A4

Zhanliang Liu; Tina R. Tuveng; Jane Wittrup Agger; Bjørge Westereng; Geir Mathiesen; Svein J. Horn; Gustav Vaaje-Kolstad; Dmf van Aalten; Vincentius Gerardus Henricus Eijsink

Enzymatic conversion of chitin, a β-1,4 linked polymer of N-acetylglucosamine, is of major interest in areas varying from the biorefining of chitin-rich waste streams to understanding how medically relevant fungi remodel their chitin-containing cell walls. Although numerous chitinolytic enzymes have been studied in detail, relatively little is known about enzymes capable of deacetylating chitin. We describe the structural and functional characterization of a 237 residue deacetylase (AnCDA) from Aspergillus nidulans FGSC A4. AnCDA acts on chito-oligomers, crystalline chitin, chitosan, and acetylxylan, but not on peptidoglycan. The Km and kcat of AnCDA for the first deacetylation of penta-N-acetyl-chitopentaose are 72u2009µM and 1.4u2009s−1, respectively. Combining mass spectrometry and analyses of acetate release, it was shown that AnCDA catalyses mono-deacetylation of (GlcNAc)2 and full deacetylation of (GlcNAc)3–6 in a non-processive manner. Deacetylation of the reducing end sugar was much slower than deacetylation of the other sugars in chito-oligomers. These enzymatic characteristics are discussed in the light of the crystal structure of AnCDA, providing insight into how the chitin deacetylase may interact with its substrates. Interestingly, AnCDA activity on crystalline chitin was enhanced by a lytic polysaccharide monooxygenase that increases substrate accessibility by oxidative cleavage of the chitin chains.


Environmental Microbiology | 2017

Outer membrane vesicles from Fibrobacter succinogenes S85 contain an array of Carbohydrate-Active Enzymes with versatile polysaccharide-degrading capacity

Anikó Várnai; Roderick I. Mackie; Vincentius Gerardus Henricus Eijsink; Phillip B. Pope

Fibrobacter succinogenes is an anaerobic bacterium naturally colonising the rumen and cecum of herbivores where it utilizes an enigmatic mechanism to deconstruct cellulose into cellobiose and glucose, which serve as carbon sources for growth. Here, we illustrate that outer membrane vesicles (OMVs) released by F. succinogenes are enriched with carbohydrate-active enzymes and that intact OMVs were able to depolymerize a broad range of linear and branched hemicelluloses and pectin, despite the inability of F. succinogenes to utilize non-cellulosic (pentose) sugars for growth. We hypothesize that the degradative versatility of F. succinogenes OMVs is used to prime hydrolysis by destabilising the tight networks of polysaccharides intertwining cellulose in the plant cell wall, thus increasing accessibility of the target substrate for the host cell. This is supported by observations that OMV-pretreatment of the natural complex substrate switchgrass increased the catalytic efficiency of a commercial cellulose-degrading enzyme cocktail by 2.4-fold. We also show that the OMVs contain a putative multiprotein complex, including the fibro-slime protein previously found to be important in binding to crystalline cellulose. We hypothesize that this complex has a function in plant cell wall degradation, either by catalysing polysaccharide degradation itself, or by targeting the vesicles to plant biomass.


Biotechnology for Biofuels | 2017

Enzymatic degradation of sulfite-pulped softwoods and the role of LPMOs

Piotr Chylenski; Dejan Petrovic; Gerdt Müller; Marie Dahlstrom; Oskar Bengtsson; Martin Lersch; Matti Siika-aho; Svein J. Horn; Vincentius Gerardus Henricus Eijsink

BackgroundRecent advances in the development of enzyme cocktails for degradation of lignocellulosic biomass, especially the discovery of lytic polysaccharide monooxygenases (LPMOs), have opened new perspectives for process design and optimization. Softwood biomass is an abundant resource in many parts of the world, including Scandinavia, but efficient pretreatment and subsequent enzymatic hydrolysis of softwoods are challenging. Sulfite pulping-based pretreatments, such as in the BALI™ process, yield substrates that are relatively easy to degrade. We have assessed how process conditions affect the efficiency of modern cellulase preparations in processing of such substrates.ResultsWe show that efficient degradation of sulfite-pulped softwoods with modern, LPMO-containing cellulase preparations requires the use of conditions that promote LPMO activity, notably the presence of molecular oxygen and sufficient reducing power. Under LPMO activity-promoting conditions, glucan conversion after 48-h incubation with Cellic® CTec3 reached 73.7 and 84.3% for Norway spruce and loblolly pine, respectively, at an enzyme loading of 8xa0mg/g of glucan. The presence of free sulfite ions had a negative effect on hydrolysis efficiency. Lignosulfonates, produced from lignin during sulfite pretreatment, showed a potential to activate LPMOs. Spiking of Celluclast®, a cellulase cocktail with low LPMO activity, with monocomponent cellulases or an LPMO showed that the addition of the LPMO was clearly more beneficial than the addition of any classical cellulase. Addition of the LPMO in reactions with spruce increased the saccharification yield from approximately 60% to the levels obtained with Cellic® CTec3.ConclusionsIn this study, we have demonstrated the importance of LPMOs for efficient enzymatic degradation of sulfite-pulped softwood. We have also shown that to exploit the full potential of LPMO-rich cellulase preparations, conditions promoting LPMO activity, in particular the presence of oxygen and reducing equivalents are necessary, as is removal of residual sulfite from the pretreatment step. The use of lignosulfonates as reductants may reduce the costs related to the addition of small molecule reductants in sulfite pretreatment-based biorefineries.


Microbial Cell Factories | 2016

Display of a β-mannanase and a chitosanase on the cell surface of Lactobacillus plantarum towards the development of whole-cell biocatalysts.

H-M Nguyen; Geir Mathiesen; Elena Maria Stelzer; Mai Lan Pham; Katarzyna Kuczkowska; Alasdair MacKenzie; Jane Wittrup Agger; Vincentius Gerardus Henricus Eijsink; Montarop Yamabhai; Clemens K. Peterbauer; Dietmar Haltrich; T-H Nguyen

BackgroundLactobacillus plantarum is considered as a potential cell factory because of its GRAS (generally recognized as safe) status and long history of use in food applications. Its possible applications include in situ delivery of proteins to a host, based on its ability to persist at mucosal surfaces of the human intestine, and the production of food-related enzymes. By displaying different enzymes on the surface of L. plantarum cells these could be used as whole-cell biocatalysts for the production of oligosaccharides. In this present study, we aimed to express and display a mannanase and a chitosanase on the cell surface of L. plantarum.ResultsManB, a mannanase from Bacillus licheniformis DSM13, and CsnA, a chitosanase from Bacillus subtilis ATCC 23857 were fused to different anchoring motifs of L. plantarum for covalent attachment to the cell surface, either via an N-terminal lipoprotein anchor (Lp_1261) or a C-terminal cell wall anchor (Lp_2578), and the resulting fusion proteins were expressed in L. plantarum WCFS1. The localization of the recombinant proteins on the bacterial cell surface was confirmed by flow cytometry and immunofluorescence microscopy. The highest mannanase and chitosanase activities obtained for displaying L. plantarum cells were 890xa0U and 1360xa0Uxa0g dry cell weight, respectively. In reactions with chitosan and galactomannans, L. plantarum CsnA- and ManB-displaying cells produced chito- and manno-oligosaccharides, respectively, as analyzed by high performance anion exchange chromatography (HPAEC) and mass spectrometry (MS). Surface-displayed ManB is able to break down galactomannan (LBG) into smaller manno-oligosaccharides, which can support growth of L. plantarum.ConclusionThis study shows that mannanolytic and chitinolytic enzymes can be anchored to the cell surface of L. plantarum in active forms. L. plantarum chitosanase- and mannanase-displaying cells should be of interest for the production of potentially ‘prebiotic’ oligosaccharides. This approach, with the enzyme of interest being displayed on the cell surface of a food-grade organism, may also be applied in production processes relevant for food industry.


PLOS ONE | 2017

Lactobacillus plantarum producing a Chlamydia trachomatis antigen induces a specific IgA response after mucosal booster immunization

Katarzyna Kuczkowska; Ine Storaker Myrbråten; Lise Øverland; Vincentius Gerardus Henricus Eijsink; Frank Follmann; Geir Mathiesen; Jes Dietrich

Mucosal immunity is important for the protection against a wide variety of pathogens. Traditional vaccines administered via parenteral routes induce strong systemic immunity, but they often fail to generate mucosal IgA. In contrast, bacteria-based vaccines comprise an appealing strategy for antigen delivery to mucosal sites. Vaginal infection with Chlamydia trachomatis can develop into upper genital tract infections that can lead to infertility. Therefore, the development of an effective vaccine against Chlamydia is a high priority. In the present study, we have explored the use of a common lactic acid bacterium, Lactobacillus plantarum, as a vector for delivery of a C. trachomatis antigen to mucosal sites. The antigen, referred as Hirep2 (H2), was anchored to the surface of L. plantarum cells using an N-terminal lipoprotein anchor. After characterization, the constructed strain was used as an immunogenic agent in mice. We explored a heterologous prime-boost strategy, consisting of subcutaneous priming with soluble H2 antigen co-administered with CAF01 adjuvant, followed by an intranasal boost with H2-displaying L. plantarum. The results show that, when used as a booster, the recombinant L. plantarum strain was able to evoke cellular responses. Most importantly, booster immunization with the Lactobacillus-based vaccine induced generation of antigen-specific IgA in the vaginal cavity.

Collaboration


Dive into the Vincentius Gerardus Henricus Eijsink's collaboration.

Top Co-Authors

Avatar

Gustav Vaaje-Kolstad

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Geir Mathiesen

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anikó Várnai

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Bjørge Westereng

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Dejan Petrovic

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Jane Wittrup Agger

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

P. B. Pope

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge