Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vincenza Leone is active.

Publication


Featured researches published by Vincenza Leone.


The Journal of Clinical Endocrinology and Metabolism | 2011

MiR-1 Is a Tumor Suppressor in Thyroid Carcinogenesis Targeting CCND2, CXCR4, and SDF-1α

Vincenza Leone; Daniela D'Angelo; Ileana G.S. Rubio; Paula Mussnich de Freitas; Antonella Federico; Marianna Colamaio; Pierlorenzo Pallante; Geraldo Medeiros-Neto; Alfredo Fusco

CONTEXT Micro-RNA have emerged as an important class of short endogenous RNA that act as posttranscriptional regulators of gene expression and are constantly deregulated in human cancer. MiR-1 has been found down-regulated in lung, colon, and prostate cancer. OBJECTIVES In this study, we investigated the possible role of miR-1 in thyroid carcinogenesis. DESIGN We have analyzed miR-1 expression in a panel of thyroid neoplasias including benign and malignant lesions and searched for miR-1 targets. RESULTS Our results show that miR-1 expression is drastically down-regulated in thyroid adenomas and carcinomas in comparison with normal thyroid tissue. Interestingly, miR-1 down-regulation was also found in thyroid hyperproliferative nonneoplastic lesions such as goiters. We identified the CCND2, coding for the cyclin D2 (CCND2) protein that favors the G1/S transition, CXCR4, and SDF-1α genes, coding for the receptor for the stromal cell derived factor-1 (SDF-1)/CXCL12 chemokine and its ligand SDF-1/CXCL12, respectively, as miR-1 targets. An inverse correlation was found between miR-1 expression and CXC chemokine receptor 4 (CXCR4) and SDF-1α protein levels in papillary and anaplastic thyroid carcinomas. Consistent with a role of the CCND2 protein in cell proliferation and CXCR4 and SDF-1α proteins in cell invasion and metastasis, functional studies demonstrate that miR-1 is able to inhibit thyroid carcinoma cell proliferation and migration. CONCLUSIONS These results indicate the involvement of miR-1 in thyroid cell proliferation and migration, validating a role of miR-1 down-regulation in thyroid carcinogenesis.


Cancer Research | 2008

Loss of the CBX7 Gene Expression Correlates with a Highly Malignant Phenotype in Thyroid Cancer

Pierlorenzo Pallante; Antonella Federico; Maria Teresa Berlingieri; Mimma Bianco; Angelo Ferraro; Floriana Forzati; Antonino Iaccarino; Maria Teresa Russo; Giovanna Maria Pierantoni; Vincenza Leone; Silvana Sacchetti; Giancarlo Troncone; Massimo Santoro; Alfredo Fusco

Using gene expression profiling, we found that the CBX7 gene was drastically down-regulated in six thyroid carcinoma cell lines versus control cells. The aims of this study were to determine whether CBX7 is related to the thyroid cancer phenotype and to try to identify new tools for the diagnosis and prognosis of thyroid cancer. We thus evaluated CBX7 expression in various snap-frozen and paraffin-embedded thyroid carcinoma tissues of different degrees of malignancy by quantitative reverse transcription-PCR and immunohistochemistry, respectively. CBX7 expression progressively decreased with malignancy grade and neoplasia stage. Indeed, it decreased in an increasing percentage of cases going from benign adenomas to papillary (PTC), follicular, and anaplastic (ATC) thyroid carcinomas. This finding coincides with results obtained in rat and mouse models of thyroid carcinogenesis. CBX7 loss of heterozygosity occurred in 36.8% of PTC and in 68.7% of ATC. Restoration of CBX7 expression in thyroid cancer cells reduced growth rate, with a retention in the G(1) phase of the cell cycle, suggesting that CBX7 can contribute to the proliferation of the transformed thyroid cells. In conclusion, loss of CBX7 expression correlates with a highly malignant phenotype in thyroid cancer patients.


Cancer Research | 2009

Chromobox Protein Homologue 7 Protein, with Decreased Expression in Human Carcinomas, Positively Regulates E-Cadherin Expression by Interacting with the Histone Deacetylase 2 Protein

Antonella Federico; Pierlorenzo Pallante; Mimma Bianco; Angelo Ferraro; Maria Chiara Monti; Marianna Cozzolino; Simona Keller; Monica Fedele; Vincenza Leone; Giancarlo Troncone; Lorenzo Chiariotti; Piero Pucci; Alfredo Fusco

Chromobox protein homologue 7 (CBX7) is a chromobox family protein encoding a novel polycomb protein, the expression of which shows a progressive reduction, well related with the malignant grade of the thyroid neoplasias. Indeed, CBX7 protein levels decreased in an increasing percentage of cases going from benign adenomas to papillary, follicular, and anaplastic thyroid carcinomas. To elucidate the function of CBX7 in carcinogenesis, we searched for CBX7 interacting proteins by a proteomic analysis. By this approach, we identified several proteins. Among these proteins, we selected histone deacetylase 2 (HDAC2), which is well known to play a key role in neoplastic cell transformation and down-regulation of E-cadherin expression, the loss of which is a critical event in the epithelial-to-mesenchymal transition. We confirmed by coimmunoprecipitation that CBX7 physically interacts with the HDAC2 protein and is able to inhibit its activity. Then, we showed that both these proteins bind the E-cadherin promoter and that CBX7 up-regulates E-cadherin expression. Consistent with these data, we found a positive statistical correlation between CBX7 and E-cadherin expression in human thyroid carcinomas. Finally, we showed that the expression of CBX7 increases the acetylation status of the histones H3 and H4 on the E-cadherin promoter. Therefore, the ability of CBX7 to positively regulate E-cadherin expression by interacting with HDAC2 and inhibiting its activity on the E-cadherin promoter would account for the correlation between the loss of CBX7 expression and a highly malignant phenotype.


Molecular and Cellular Endocrinology | 2014

Mir-23b and miR-130b expression is downregulated in pituitary adenomas.

Vincenza Leone; Concetta Langella; Daniela D’Angelo; Paula Mussnich; Anne Wierinckx; Luigi Terracciano; Gérald Raverot; Joël Lachuer; Sandra Rotondi; Marie-Lise Jaffrain-Rea; Jacqueline Trouillas; Alfredo Fusco

MicroRNA (miRNA) deregulation plays a critical role in tumorigenesis. miR-23b and miR-130b are induced by thyrotropin in thyroid cells in a cAMP-dependent manner. The aim of our work has been to investigate the possible role of miR-23b and miR-130b in pituitary tumorigenesis. We have analyzed their expression in a panel of pituitary adenomas (PAs) including GH and NFPA adenomas. We report that miR-23b and miR-130b are drastically reduced in GH, gonadotroph and NFPA adenomas in comparison with normal pituitary gland. Interestingly, the overexpression of miR-23b and miR-130b inhibits cell proliferation arresting the cells in the G1 and G2 phase of the cell cycle, respectively. Moreover, we demonstrate that miR-23b and miR-130b target HMGA2 and cyclin A2 (CCNA2) genes, respectively. Finally, downregulation of miR-23b and miR-130b expression is associated with increased levels of their respective targets in human PAs. These findings suggest that miR-23b and miR-130b downregulation may contribute to pituitary tumorigenesis.


Molecular Endocrinology | 2011

A TSH-CREB1-microRNA Loop Is Required for Thyroid Cell Growth

Vincenza Leone; Daniela D'Angelo; Angelo Ferraro; Pierlorenzo Pallante; Ileana Gabriela Sanchez Rubio; Massimo Santoro; Carlo M. Croce; Alfredo Fusco

MicroRNA (miRNA or miR) are an important class of regulators that participate in such biological functions as development, cell proliferation, differentiation, and apoptosis. The aim of this study was to elucidate the role of miRNA in cell proliferation using a unique cell system, namely thyroid cells that require thyrotropin for their growth. Here, we report the identification of a set of five specific miRNA (miR-1, miR-28-A, miR-290-5p, miR-296-3p, and miR-297a), whose down-regulation by thyrotropin is required for thyroid cell growth. In fact, overexpression of these miRNA negatively affects cell growth. We show that three of these miRNA target cAMP-responsive element binding protein (CREB)1, a thyrotropin-activated transcription factor, and that CREB1 binds the regulatory regions of the down-regulated miRNA. Hence, these data indicate that a synergistic loop involving thyrotropin, CREB1, and miRNA is required for thyroid cell proliferation.


Molecular Oncology | 2013

The High Mobility Group A proteins contribute to thyroid cell transformation by regulating miR-603 and miR-10b expression

Paula Mussnich; Daniela D'Angelo; Vincenza Leone; Carlo M. Croce; Alfredo Fusco

The overexpression of the HMGA1 proteins is a feature of human malignant neoplasias and has a causal role in cell transformation. The aim of our study has been to investigate the microRNAs (miRNAs or miRs) regulated by the HMGA1 proteins in the process of cell transformation analyzing the miRNA expression profile of v‐ras‐Ki oncogene‐transformed thyroid cells expressing or not HMGA1 proteins. We demonstrate that, among the miRNAs regulated by cell transformation, there are miR‐10b, miR‐21, miR‐125b, miR‐221 and miR‐222 that are positively and miR‐34a and miR‐603 that are negatively regulated by HMGA1 expression. Then, we focused our attention on the miR‐10b and miR‐603 whose expression was dependent on the presence of HMGA1 also in other cell systems. We found that miR‐10b is able to target the PTEN gene, whereas miR‐603 targets the CCND1 and CCND2 genes coding for the cyclin D1 and cyclin D2 proteins, respectively. Moreover, functional studies showed that miR‐10b and miR‐603 regulate positively and negatively, respectively, cell proliferation and migration suggesting a role of their dysregulation in thyroid cell transformation.


The Journal of Clinical Endocrinology and Metabolism | 2012

Thyrotropin Regulates Thyroid Cell Proliferation by Up-Regulating miR-23b and miR-29b that Target SMAD3

Vincenza Leone; Daniela D'Angelo; Pierlorenzo Pallante; Carlo M. Croce; Alfredo Fusco

CONTEXT MicroRNA (miRNA or miR) have emerged as an important class of short endogenous RNA that act as post-transcriptional regulators of gene expression and have a critical role in cell proliferation and differentiation. OBJECTIVES The aim of this study was to elucidate the role of miRNA in the proliferation of differentiated thyroid cells that require TSH for their growth. DESIGN To elucidate the role of miRNA in thyroid cell proliferation, we have analyzed the miRNA expression profile of PC Cl 3 cells before and after the stimulation by TSH. RESULTS We report the identification of two specific miRNA (miR-23b and miR-29b) whose up-regulation by TSH is required for thyroid cell growth. We identified mothers against decapentaplegic homolog 3 (Smad3), a member of the TGF-β pathway that has an inhibitor role in thyroid follicular cell proliferation as a target of miR-23b and miR-29b. Functional studies demonstrated that the overexpression of miR-23b and miR-29b promotes thyroid cell growth. Interestingly, an increased expression of both these miRNA was also detected in experimental and human goiters. CONCLUSIONS These findings support the idea that the regulation of miRNA expression synergizes with the traditional proliferation pathways in promoting cell growth.


Oncogene | 2010

CCDC6 represses CREB1 activity by recruiting histone deacetylase 1 and protein phosphatase 1.

Vincenza Leone; Gelsomina Mansueto; G M Pierantoni; M Tornincasa; Francesco Merolla; Aniello Cerrato; Massimo Santoro; Michele Grieco; Andrea Scaloni; Angela Celetti; Alfredo Fusco

RET/papillary thyroid carcinoma 1 (PTC1) oncogene is frequently activated in human PTCs. It is characterized by the fusion of the intracellular kinase-encoding domain of RET to the first 101 amino acids of CCDC6. The aim of our work is to characterize the function of the CCDC6 protein to better understand the function of its truncation, that results in the loss of the expression of one allele, in the process of thyroid carcinogenesis. Here, we report that CCDC6 interacts with CREB1 and represses its transcriptional activity by recruiting histone deacetylase 1 and protein phosphatase 1 proteins at the CRE site of the CREB1 target genes. Finally, we show an increased CREB1 phosphorylation and activity in PTCs carrying the RET/PTC1 oncogene. Consistently, an increased expression of two known CREB1 target genes, AREG and cyclin A, was observed in this subgroup of thyroid papillary carcinomas. Therefore, the repression of CREB1 activity by CCDC6 has a critical function in the development of human thyroid papillary carcinomas carrying RET/PTC1 activation.


BMC Cancer | 2013

Critical role of CCDC6 in the neoplastic growth of testicular germ cell tumors

Stefania Staibano; Gennaro Ilardi; Vincenza Leone; Chiara Luise; Francesco Merolla; Francesco Morra; Maria Siano; Renato Franco; Alfredo Fusco; Paolo Chieffi; Angela Celetti

BackgroundDNA damage response has been clearly described as an anti-cancer barrier in early human tumorigenesis. Moreover, interestingly, testicular germ cell tumors (TGCTs) have been reported to lack the DNA Damage Response (DDR) pathway activation.CCDC6 is a pro-apoptotic phosphoprotein substrate of the kinase ataxia telangectasia mutated (ATM) able to sustain DNA damage checkpoint in response to genotoxic stress and is commonly rearranged in malignancies upon fusion with different partners.In our study we sought to determine whether CCDC6 could have a role in the patho-genesis of testicular germ cell tumors.MethodsTo achieve this aim, analysis for CCDC6 expression has been evaluated on serial sections of the mouse testis by immunohistochemistry and on separate populations of murine testicular cells by western blot. Next, the resistance to DNA damage-induced apoptosis and the production of reactive oxygen species has been investigated in GC1 cells, derived from immortalized type B murine germ cells, following CCDC6 silencing. Finally, the CCDC6 expression in normal human testicular cells, in Intratubular Germ Cell Neoplasia Unclassified (IGCNU), in a large series of male germ cell tumours and in the unique human seminoma TCam2 cell line has been evaluated by immunohistochemistry and by Western Blot analyses.ResultsThe analysis of the CCDC6 expression revealed its presence in Sertoli cells and in spermatogonial cells. CCDC6 loss was the most consistent feature among the primary tumours and TCam2 cells. Interestingly, following treatment with low doses of H2O2, the silencing of CCDC6 in GC1 cells caused a decrease in the oxidized form of cytochrome c and low detection of Bad, PARP-1 and Caspase 3 proteins. Moreover, in the silenced cells, upon oxidative damage, the cell viability was protected, the γH2AX activation was impaired and the Reactive Oxygen Species (ROS) release was decreased.ConclusionsTherefore, our results suggest that the loss of CCDC6 could aid the spermatogonial cells to be part of a pro-survival pathway that helps to evade the toxic effects of endogenous oxidants and contributes to testicular neoplastic growth.


The Journal of Clinical Endocrinology and Metabolism | 2013

Tumor suppressor role of the CL2/DRO1/CCDC80 gene in thyroid carcinogenesis.

Angelo Ferraro; Filippo Schepis; Vincenza Leone; Antonella Federico; Eleonora Borbone; Pierlorenzo Pallante; Maria Teresa Berlingieri; Gennaro Chiappetta; Mario Monaco; Dario Palmieri; Lorenzo Chiariotti; Massimo Santoro; Alfredo Fusco

CONTEXT Thyroid carcinoma is one of the most common malignancies of the endocrine system, and, despite the high frequency of oncogene activation in thyroid neoplastic lesions, the tumor suppressor genes involved in thyroid carcinogenesis remain unidentified. Our previous data implicated a link between the CL2/CCDC80 gene and thyroid cancer. OBJECTIVE The objective of the study was to examine the expression of the CL2/CCDC80 gene in human thyroid carcinomas in the attempt to determine whether it plays a role in thyroid carcinogenesis. DESIGN We evaluated the expression of CL2/CCDC80 in a large number of thyroid neoplastic tissue samples differing in degree of malignancy. We also investigated the effects of its restoration in 2 human thyroid carcinoma cell lines characterized by very low levels of CL2/CCDC80 expression. RESULTS CL2/CCDC80 expression was much lower in almost all the thyroid carcinomas analyzed than in normal thyroid tissues and was lowest in follicular variants of papillary carcinomas. Loss of heterozygosity partially accounted for CL2/CCDC80 down-regulation in thyroid carcinoma samples. Restoration of CL2/CCDC80 expression in the 2 human thyroid anaplastic carcinoma cell lines resulted in a higher susceptibility to apoptosis and suppression of the malignant phenotype. CL2/CCDC80 expression positively regulated the expression of E-cadherin, thereby halting cancer progression. CONCLUSIONS These results indicate that CL2/CCDC80 is a putative tumor suppressor gene in thyroid carcinogenesis.

Collaboration


Dive into the Vincenza Leone's collaboration.

Top Co-Authors

Avatar

Alfredo Fusco

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Pierlorenzo Pallante

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Angelo Ferraro

National Technical University of Athens

View shared research outputs
Top Co-Authors

Avatar

Concetta Langella

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Daniela D'Angelo

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonella Federico

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Angela Celetti

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Francesco Merolla

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge