Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vincenzo Giansanti is active.

Publication


Featured researches published by Vincenzo Giansanti.


Apoptosis | 2011

Conversation between apoptosis and autophagy: "Is it your turn or mine?".

Vincenzo Giansanti; Alicia Torriglia; A.Ivana Scovassi

Drug resistance of cancer cells is often correlated with apoptosis evasion; however, an active involvement of autophagy in this scenario has been recently proposed, based on the evidence that autophagy could exert a protective role toward the activation of apoptosis in cancer cells. In this review, we briefly review the basic features of apoptosis, and we describe in details the molecular patterns of autophagy, with a special emphasis on its still controversial physiological function(s). The crucial factors governing the cross talk between autophagy and apoptosis will be illustrated.


Biochemical Pharmacology | 2010

PARP inhibitors: New tools to protect from inflammation

Vincenzo Giansanti; Francesca Donà; Micol Tillhon; A.Ivana Scovassi

Poly(ADP-ribosylation) consists in the conversion of β-NAD(+) into ADP-ribose, which is then bound to acceptor proteins and further used to form polymers of variable length and structure. The correct turnover of poly(ADP-ribose) is ensured by the concerted action of poly(ADP-ribose) polymerase (PARP) and poly(ADP-ribose) glycohydrolase (PARG) enzymes, which are responsible for polymer synthesis and degradation, respectively. Despite the positive role of poly(ADP-ribosylation) in sensing and repairing DNA damage, generated also by ROS, PARP over-activation could allow NAD depletion and consequent necrosis, thus leading to an inflammatory condition in many diseases. In this respect, inhibition of PARP enzymes could exert a protective role towards a number of pathological conditions; i.e. the combined treatment of tumors with PARP inhibitors/anticancer agents proved to have a beneficial effect in cancer therapy. Thus, pharmacological inactivation of poly(ADP-ribosylation) could represent a novel therapeutic strategy to limit cellular injury and to attenuate the inflammatory processes that characterize many disorders.


Journal of Medicinal Chemistry | 2009

New arylthioindoles and related bioisosteres at the sulfur bridging group. 4. Synthesis, tubulin polymerization, cell growth inhibition, and molecular modeling studies.

Giuseppe La Regina; Taradas Sarkar; Ruoli Bai; Michael C. Edler; Roberto Saletti; Antonio Coluccia; Francesco Piscitelli; Lara Minelli; Valerio Gatti; Carmela Mazzoccoli; Vanessa Palermo; Cristina Mazzoni; Claudio Falcone; Anna Ivana Scovassi; Vincenzo Giansanti; Pietro Campiglia; Amalia Porta; Bruno Maresca; Ernest Hamel; Andrea Brancale; Ettore Novellino; Romano Silvestri

New arylthioindoles along with the corresponding ketone and methylene compounds were potent tubulin assembly inhibitors. As growth inhibitors of MCF-7 cells, sulfur derivatives were superior or sometimes equivalent to the ketones, while methylene derivatives were substantially less effective. Esters 24, 27-29, 36, 39, and 41 showed approximately 50% of inhibition on human HeLa and HCT116/chr3 cells at 0.5 microM, and these compounds inhibited the growth of HEK, M14, and U937 cells with IC(50)s in the 78-220 nM range. While murine macrophage J744.1 cell growth was significantly less affected (20% at higher concentrations), four other nontransformed cell lines remained sensitive to these esters. The effect of drug treatment on cell morphology was examined by time-lapse microscopy. In a protocol set up to evaluate toxicity on the Saccharomyces cerevisiae BY4741 wild type strain, compounds 24 and 54 strongly reduced cell growth, and 29, 36, and 39 also showed significant inhibition.


Biochemical Pharmacology | 2011

Killing of tumor cells: A drama in two acts

Vincenzo Giansanti; Micol Tillhon; Giuliano Mazzini; Ennio Prosperi; Paolo Lombardi; A.Ivana Scovassi

Cancer still represents a major health problem worldwide, which urges the development of more effective strategies. Resistance to chemotherapy, a major obstacle for cancer eradication, is mainly related to an intrinsic failure to activate the apoptotic pathways. However, a protective effect of autophagy toward cancer cells has been recently observed, thus adding further complexity to the development of an effective approach counteracting cancer cell growth and improving the response to therapy.


Journal of Cellular and Molecular Medicine | 2013

Characterization of stress response in human retinal epithelial cells.

Vincenzo Giansanti; Gloria E. Villalpando Rodriguez; Michelle Savoldelli; Roberta Gioia; Antonella Forlino; Giuliano Mazzini; Marzia Pennati; Nadia Zaffaroni; Anna Ivana Scovassi; Alicia Torriglia

The pathogenesis of age‐related macular degeneration (AMD) involves demise of the retinal pigment epithelium and death of photoreceptors. In this article, we investigated the response of human adult retinal pigmented epithelial (ARPE‐19) cells to 5‐(N,N‐hexamethylene)amiloride (HMA), an inhibitor of Na+/H+ exchangers. We observed that ARPE‐19 cells treated with HMA are unable to activate ‘classical’ apoptosis but they succeed to activate autophagy. In the first 2 hrs of HMA exposure, autophagy is efficient in protecting cells from death. Thereafter, autophagy is impaired, as indicated by p62 accumulation, and this protective mechanism becomes the executioner of cell death. This switch in autophagy property as a function of time for a single stimulus is here shown for the first time. The activation of autophagy was observed, at a lesser extent, with etoposide, suggesting that this event might be a general response of ARPE cells to stress and the most important pathway involved in cell resistance to adverse conditions and toxic stimuli.


The International Journal of Biochemistry & Cell Biology | 2009

Study of the effects of a new pyrazolecarboxamide: changes in mitochondria and induction of apoptosis.

Vincenzo Giansanti; Tania Camboni; Francesco Piscitelli; Ennio Prosperi; Giuseppe La Regina; Maria Claudia Lazzè; Giada Santin; Romano Silvestri; Anna Ivana Scovassi

Drug resistance of cancer cells is often correlated with the evasion of apoptosis, thus a major goal in cancer research is to search for compounds able to counteract cancer by promoting apoptosis. A variety of compounds with anticancer activity are characterised by the presence of the pyrazole as core nucleus. We synthesised a panel of pyrrolyl-pyrazole-carboxamides and we focused on the new compound RS 2780 (N-2-phenylethyl 1-(4-chlorophenyl)-3-methyl-5-pyrrolylpyrazole-4-carboxamide). The biological effects of RS 2780 on cell proliferation and viability were first evaluated on human HeLa cancer cells. As revealed by cell growth and viability experiments, a 24-h treatment of HeLa cells with increasing concentrations of RS 2780 (ranging from 0.1 to 100 microM) proved to inhibit cell proliferation and to affect cell viability. Notably, the new compound was effective also on colon carcinoma SW613-B3 cells, which are extremely resistant to most drugs, while it does not alter the proliferation of normal fibroblasts. We observed that RS 2780 interferes with the structural and functional properties of mitochondria, leading to the activation of the mitochondria-dependent apoptotic pathway. Apoptosis occurrence was supported by a number of morphological and biochemical hallmarks, including chromatin condensation, internucleosomal DNA fragmentation, PARP-1 cleavage and caspase activation. In conclusion, our results demonstrate for the first time the antiproliferative properties of the new compound RS 2780 on HeLa and SW613-B3 cancer cells and show that its effects on mitochondria lead to apoptosis.


European Journal of Histochemistry | 2012

Fluorescence properties of the Na+/H+exchanger inhibitor HMA (5-(N,N-hexamethylene)amiloride) are modulated by intracellular pH

Vincenzo Giansanti; G. Santamaria; Alicia Torriglia; Francesca Aredia; Anna Ivana Scovassi; Giovanni Bottiroli; Anna Cleta Croce

HMA (5-(N,N-hexamethylene)amiloride), which belongs to a family of novel amiloride derivatives, is one of the most effective inhibitors of Na+/H+ exchangers, while uneffective against Na+ channels and Na+/Ca2+ exchangers. In this study, we provided evidence that HMA can act as a fluorescent probe. In fact, human retinal ARPE19 cells incubated with HMA show an intense bluish fluorescence in the cytoplasm when observed at microscope under conventional UV-excitation conditions. Interestingly, a prolonged observation under continuous exposure to excitation lightdoes not induce great changes in cells incubated with HMA for times up to about 5 min, while an unexpected rapid increase in fluorescence signal is observed in cells incubated for longer times. The latter phenomenon is particularly evident in the perinuclear region and in discrete spots in the cytoplasm. Since HMA modulates intracellular acidity, the dependence of its fluorescence properties on medium pH and response upon irradiation have been investigated in solution, at pH 5.0 and pH 7.2. The changes in both spectral shape and amplitude emission indicate a marked pH influence on HMA fluorescence properties, making HMA exploitable as a self biomarker of pH alterations in cell studies, in the absence of perturbations induced by the administration of other exogenous dyes.


Apoptosis | 2013

Multiple effects of the Na+/H+ antiporter inhibitor HMA on cancer cells

Francesca Aredia; Vincenzo Giansanti; Giuliano Mazzini; Monica Savio; Luis Miguel Guamán Ortiz; Imene Jaadane; Nadia Zaffaroni; Antonella Forlino; Alicia Torriglia; Anna Ivana Scovassi

Amiloride derivatives are a class of new promising chemotherapeutic agents. A representative member of this family is the sodium–hydrogen antiporter inhibitor HMA (5-(N,N-hexamethylene amiloride), which has been demonstrated to induce cellular intracytosolic acidification and cell death through the apoptotic pathway(s). This work aims at characterizing drug response of human cancer cell lines to HMA. After a first screening revealing that HMA interferes with cancer cell survival, we focused our attention on SW613-B3 colon carcinoma cells, which are intrinsically resistant to a panel of drugs. Searching for the activation of canonical apoptosis, we found that this process was abortive, given that the final steps of this process, i.e. PARP-1 cleavage and DNA ladder, were not detectable. Thus, we addressed caspase-independent paradigms of cell death and we observed that HMA promotes the induction of the LEI/L-DNase II pathway as well as of parthanatos. Finally, we explored the possible impact of autophagy of cell response to HMA, providing the evidence that autophagy is activated in our experimental system. On the whole, our results defined the biochemical reactions triggered by HMA, and elucidated its multiple effects, thus adding further complexity to the intricate network leading to drug resistance.


Current Enzyme Inhibition | 2009

Poly(ADP-Ribosylation): Beneficial Effects of Its Inhibition

Vincenzo Giansanti; Francesca Donà; A. I. Scovassi

Poly(ADP-ribosylation) is a post-translational modification of proteins which plays a crucial role in basic cellular processes, including DNA repair and replication, transcription and cell death. The biochemical reaction of poly(ADPribosylation) consists of the conversion of s-NAD into ADP-ribose, and the further formation of polymers of variable length and structure bound to nuclear protein acceptors. Polymer synthesis and degradation are performed respectively by poly(ADP-ribose) polymerase (PARP) and poly(ADP-ribose) glycohydrolase (PARG) enzymes. Although poly(ADPribosylation) is considered as an emergency reaction to DNA damage, high levels of PARP activation cause NAD depletion and consequent necrosis, thus having a pathogenetic role in many diseases. As for chemical compounds able to inhibit poly(ADP-ribosylation), since the use of nicotinamide and benzamide, potent derivatives have been developed and new molecules have been tested. Pharmacological inhibition of PARP enzymes proved to reverse the noxious effects of ROS, thus exerting a protective role towards a number of pathological conditions. Moreover, the combined treatment of tumors with PARP inhibitors and anticancer agents has been shown to have a beneficial effect in cancer therapy. Remarkably, pharmacological inactivation of poly(ADP-ribosylation) represents a novel therapeutical strategy to limit cellular injury and to improve the prognosis of a variety of diseases. For these reasons, at present a lot of Companies and research laboratories are actively involved in the modeling of new compounds able to modulate poly(ADP-ribosylation).


Cell Biology International | 2011

Expression of antioxidant defense and poly(ADP-ribose) polymerase-1 in rat developing Sertoli cells.

Linda Scarabelli; Cristina Lanza; Ilaria Demori; Rita Accomando; Vincenzo Giansanti; Anna Ivana Scovassi; Silvio Palmero

Sertoli cells play an essential role in the development of a functional testis. ROS (reactive oxygen species) are normally produced by the developing testicular cells and may be dangerous to spermatogenesis. The aim of this study was to investigate the developmental expression of genes involved in antioxidant defense as well as in the DNA damage response in rat Sertoli cells. As revealed by quantitative RT‐PCR analysis, the expression pattern of the antioxidant enzymes GST (glutathione‐S‐transferase), CAT (catalase) and SOD (superoxide dismutase) showed a progressive decrease from birth to puberty. The expression level of the oncosuppressor p53 revealed a net reduction as well. We next focused on PARP‐1 [poly(ADP‐ribose) polymerase‐1], a ‘guardian of the genome’ that combats stress conditions. At both the mRNA and protein level, PARP‐1 expression was low at the early stage of development and increased later on. Maximal PARP‐1 expression was preceded by a rise in the transcript level for MTs (metallothioneins), which provide zinc to zinc‐dependent enzymes and proteins, including PARP‐1. Our results showed an increased expression of PARP‐1 during Sertoli cell development, together with a decrease in the expression of antioxidant enzymes. In conclusion, a role of PARP‐1 in protecting the testicular differentiation is suggested.

Collaboration


Dive into the Vincenzo Giansanti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge