Vincenzo Lupo
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vincenzo Lupo.
Clinical Genetics | 2007
R Claramunt; T Sevilla; Vincenzo Lupo; A Cuesta; José M. Millán; Jj Vílchez; Francesc Palau; Carmen Espinós
Charcot–Marie–Tooth (CMT) disease type 4 (CMT4) is the name given to autosomal recessive forms of hereditary motor and sensory neuropathy (HMSN). When we began this study, three genes or loci associated with inherited peripheral neuropathies had already been identified in the European Gypsy population: HMSN‐Lom (MIM 601455), HMSN‐Russe (MIM 605285) and the congenital cataracts facial dysmorphism neuropathy syndrome (MIM 604168). We have carried out genetic analyses in a series of 20 Spanish Gypsy families diagnosed with a demyelinating CMT disease compatible with an autosomal recessive trait. We found the p.R148X mutation in the N‐myc downstream‐regulated gene 1 gene to be responsible for the HMSN‐Lom in four families and also possible linkage to the HMSN‐Russe locus in three others. We have also studied the CMT4C locus because of the clinical similarities and showed that in 10 families, the disease is caused by mutations located on the SH3 domain and tetratricopeptide repeats 2 (SH3TC2) gene: p.R1109X in 20 out of 21 chromosomes and p.C737_P738delinsX in only one chromosome. Moreover, the SH3TC2 p.R1109X mutation is associated with a conserved haplotype and, therefore, may be a private founder mutation for the Gypsy population. Estimation of the allelic age revealed that the SH3TC2 p.R1109X mutation may have arisen about 225 years ago, probably as the consequence of a bottleneck.
Brain | 2016
Teresa Sevilla; Vincenzo Lupo; Dolores Martínez-Rubio; Paula Sancho; Rafael Sivera; María José Chumillas; Mar García-Romero; Pascual-Pascual Si; N. Muelas; Joaquín Dopazo; Juan J. Vílchez; Francesc Palau; Carmen Espinós
Charcot-Marie-Tooth disease (CMT) is a complex disorder with wide genetic heterogeneity. Here we present a new axonal Charcot-Marie-Tooth disease form, associated with the gene microrchidia family CW-type zinc finger 2 (MORC2). Whole-exome sequencing in a family with autosomal dominant segregation identified the novel MORC2 p.R190W change in four patients. Further mutational screening in our axonal Charcot-Marie-Tooth disease clinical series detected two additional sporadic cases, one patient who also carried the same MORC2 p.R190W mutation and another patient that harboured a MORC2 p.S25L mutation. Genetic and in silico studies strongly supported the pathogenicity of these sequence variants. The phenotype was variable and included patients with congenital or infantile onset, as well as others whose symptoms started in the second decade. The patients with early onset developed a spinal muscular atrophy-like picture, whereas in the later onset cases, the initial symptoms were cramps, distal weakness and sensory impairment. Weakness and atrophy progressed in a random and asymmetric fashion and involved limb girdle muscles, leading to a severe incapacity in adulthood. Sensory loss was always prominent and proportional to disease severity. Electrophysiological studies were consistent with an asymmetric axonal motor and sensory neuropathy, while fasciculations and myokymia were recorded rather frequently by needle electromyography. Sural nerve biopsy revealed pronounced multifocal depletion of myelinated fibres with some regenerative clusters and occasional small onion bulbs. Morc2 is expressed in both axons and Schwann cells of mouse peripheral nerve. Different roles in biological processes have been described for MORC2. As the silencing of Charcot-Marie-Tooth disease genes have been associated with DNA damage response, it is tempting to speculate that a deregulation of this pathway may be linked to the axonal degeneration observed in MORC2 neuropathy, thus adding a new pathogenic mechanism to the long list of causes of Charcot-Marie-Tooth disease.
Glia | 2013
Estelle Arnaud Gouttenoire; Vincenzo Lupo; Eduardo Calpena; Luca Bartesaghi; Fanny Schüpfer; Jean-Jacques Médard; Fabienne Maurer; Jacques S. Beckmann; Jan Senderek; Francesc Palau; Carmen Espinós; Roman Chrast
Mutations in SH3TC2 trigger autosomal recessive demyelinating Charcot‐Marie‐Tooth type 4C (CMT4C) neuropathy. Sh3tc2 is specifically expressed in Schwann cells and is necessary for proper myelination of peripheral axons. In line with the early onset of neuropathy observed in patients with CMT4C, our analyses of the murine model of CMT4C revealed that the myelinating properties of Sh3tc2‐deficient Schwann cells are affected at an early stage. This early phenotype is associated with changes in the canonical Nrg1/ErbB pathway involved in control of myelination. We demonstrated that Sh3tc2 interacts with ErbB2 and plays a role in the regulation of ErbB2 intracellular trafficking from the plasma membrane upon Nrg1 activation. Interestingly, both the loss of Sh3tc2 function in mice and the pathological mutations present in CMT4C patients affect ErbB2 internalization, potentially altering its downstream intracellular signaling pathways. Altogether, our results indicate that the molecular mechanism for the axonal size sensing is disturbed in Sh3tc2‐deficient myelinating Schwann cells, thus providing a novel insight into the pathophysiology of CMT4C neuropathy.
The Journal of Molecular Diagnostics | 2016
Vincenzo Lupo; Francisco García-García; Paula Sancho; Cristina Tello; Mar García-Romero; Liliana Villarreal; Antonia Albertí; Rafael Sivera; Joaquín Dopazo; Pascual-Pascual Si; Celedonio Márquez-Infante; Carlos Casasnovas; Teresa Sevilla; Carmen Espinós
Charcot-Marie-Tooth disease is characterized by broad genetic heterogeneity with >50 known disease-associated genes. Mutations in some of these genes can cause a pure motor form of hereditary motor neuropathy, the genetics of which are poorly characterized. We designed a panel comprising 56 genes associated with Charcot-Marie-Tooth disease/hereditary motor neuropathy. We validated this diagnostic tool by first testing 11 patients with pathological mutations. A cohort of 33 affected subjects was selected for this study. The DNAJB2 c.352+1G>A mutation was detected in two cases; novel changes and/or variants with low frequency (<1%) were found in 12 cases. There were no candidate variants in 18 cases, and amplification failed for one sample. The DNAJB2 c.352+1G>A mutation was also detected in three additional families. On haplotype analysis, all of the patients from these five families shared the same haplotype; therefore, the DNAJB2 c.352+1G>A mutation may be a founder event. Our gene panel allowed us to perform a very rapid and cost-effective screening of genes involved in Charcot-Marie-Tooth disease/hereditary motor neuropathy. Our diagnostic strategy was robust in terms of both coverage and read depth for all of the genes and patient samples. These findings demonstrate the difficulty in achieving a definitive molecular diagnosis because of the complexity of interpreting new variants and the genetic heterogeneity that is associated with these neuropathies.
Human Molecular Genetics | 2015
David Pla-Martín; Eduardo Calpena; Vincenzo Lupo; C. Márquez; Eloy Rivas; Rafael Sivera; Teresa Sevilla; Francesc Palau; Carmen Espinós
Mutations in the GDAP1 gene cause different forms of Charcot-Marie-Tooth (CMT) disease, and the primary clinical expression of this disease is markedly variable in the dominant inheritance form (CMT type 2K; CMT2K), in which carriers of the GDAP1 p.R120W mutation can display a wide range of clinical severity. We investigated the JPH1 gene as a genetic modifier of clinical expression variability because junctophilin-1 (JPH1) is a good positional and functional candidate. We demonstrated that the JPH1-GDAP1 cluster forms a paralogon and is conserved in vertebrates. Moreover, both proteins play a role in Ca(2+) homeostasis, and we demonstrated that JPH1 is able to restore the store-operated Ca(2+) entry (SOCE) activity in GDAP1-silenced cells. After the mutational screening of JPH1 in a series of 24 CMT2K subjects who harbour the GDAP1 p.R120W mutation, we characterized the JPH1 p.R213P mutation in one patient with a more severe clinical picture. JPH1(p.R213P) cannot rescue the SOCE response in GDAP1-silenced cells. We observed that JPH1 colocalizes with STIM1, which is the activator of SOCE, in endoplasmic reticulum-plasma membrane puncta structures during Ca(2+) release in a GDAP1-dependent manner. However, when GDAP1(p.R120W) is expressed, JPH1 seems to be retained in mitochondria. We also established that the combination of GDAP1(p.R120W) and JPH1(p.R213P) dramatically reduces SOCE activity, mimicking the effect observed in GDAP1 knock-down cells. In summary, we conclude that JPH1 and GDAP1 share a common pathway and depend on each other; therefore, JPH1 can contribute to the phenotypical consequences of GDAP1 mutations.
Journal of Medical Genetics | 2009
Carmen Espinós; Mercé Pineda; Dolores Martínez-Rubio; Vincenzo Lupo; Aida Ormazabal; Maria A Vilaseca; Leo J M Spaapen; Francesc Palau; Rafael Artuch
Urocanase is an enzyme in the histidine pathway encoded by the UROC1 gene. This report describes the first putative mutations, p.L70P and p.R450C, in the coding region of the UROC1 gene in a girl with urocanic aciduria presenting with mental retardation and intermittent ataxia. Computed (in silico) predictions, protein expression studies and enzyme activity assays suggest that none of the mutations can produce a fully functional enzyme. The p.L70P substitution, which probably implies the disruption of an α-helix in the N-terminus, would alter its properties and therefore, its function. The p.R450C change would render impossible any interaction between urocanase and its substrate and would loss its enzyme activity. Consequently, these studies suggest that both mutations could alter the correct activity of urocanase, which would explain the clinical and biochemical findings described in this patient.
European Journal of Neurology | 2015
Teresa Sevilla; Rafael Sivera; Dolores Martínez-Rubio; Vincenzo Lupo; M. J. Chumillas; Eduardo Calpena; J. Dopazo; Juan J. Vílchez; Francesc Palau; Carmen Espinós
A three‐generation family affected by axonal Charcot−Marie−Tooth disease (CMT) was investigated with the aim of discovering genetic defects and to further characterize the phenotype.
Journal of The Peripheral Nervous System | 2011
Teresa Sevilla; Vincenzo Lupo; Rafael Sivera; Clara Marco-Marín; Dolores Martínez-Rubio; Eloy Rivas; Arturo Hernández; Francesc Palau; Carmen Espinós
Congenital hypomyelinating neuropathy (CHN) is a severe inherited neuropathy with neonatal or early infancy onset, reduced nerve conduction velocity, and pathological evidence of hypomyelination. We describe a case of CHN that presented with neonatal hypotonia and a progressive downhill clinical course, developing cranial nerve dysfunction, and respiratory failure. The nerve conduction velocities were severely slowed and sural nerve biopsy revealed non‐myelinated and poorly myelinated axons, with no typical onion bulbs. The mutational screening showed that our proband harbored a novel missense mutation, p.S121F, in the MPZ gene. In silico analyses and molecular modeling predicted that the replacement of a serine by a phenylalanine is a non‐tolerated change and may affect the folding and the stability of the protein. Subcellular location studies were performed and revealed that the mutant protein loses its correct location on the cell membrane surface and is mainly expressed in the cytosol, reducing its adhesive properties. This case illustrates the clinical heterogeneity that exists in neuropathies associated with MPZ mutations and highlights that in patients with mild hypotonia in the first months that develop a very severe demyelinating neuropathy, the MPZ gene must be taken into account.
Clinical Genetics | 2018
Cristina Tello; Alejandra Darling; Vincenzo Lupo; Belén Pérez-Dueñas; Carmen Espinós
Neurodegeneration with brain iron accumulation (NBIA) is a group of inherited heterogeneous neurodegenerative rare disorders. These patients present with dystonia, spasticity, parkinsonism and neuropsychiatric disturbances, along with brain magnetic resonance imaging (MRI) evidence of iron accumulation. In sum, they are devastating disorders and to date, there is no specific treatment. Ten NBIA genes are accepted: PANK2, PLA2G6, C19orf12, COASY, FA2H, ATP13A2, WDR45, FTL, CP, and DCAF17; and nonetheless, a relevant percentage of patients remain without genetic diagnosis, suggesting that other novel NBIA genes remain to be discovered. Overlapping complex clinical pictures render an accurate differential diagnosis difficult. Little is known about the pathophysiology of NBIAs. The reported NBIA genes take part in a variety of pathways: CoA synthesis, lipid and iron metabolism, autophagy, and membrane remodeling. The next‐generation sequencing revolution has achieved relevant advances in genetics of Mendelian diseases and provide new genes for NBIAs, which are investigated according to 2 main strategies: genes involved in disorders with similar phenotype and genes that play a role in a pathway of interest. To achieve an effective therapy for NBIA patients, a better understanding of the biological process underlying disease is crucial, moving toward a new age of precision medicine.
Neurogenetics | 2017
Paula Sancho; Ana Sánchez-Monteagudo; Antonio Collado; Clara Marco-Marín; Cristina Domínguez-González; Ana Camacho; Erwin Knecht; Carmen Espinós; Vincenzo Lupo
In two siblings, who suffer from an early childhood-onset axonal polyneuropathy with exclusive involvement of motor fibers, the c.629T>C (p.F210S) mutation was identified in the X-linked AIFM1 gene, which encodes for the apoptosis-inducing factor (AIF). The mutation was predicted as deleterious, according to in silico analysis. A decreased expression of the AIF protein, altered cellular morphology, and a fragmented mitochondrial network were observed in the proband’s fibroblasts. This new form of motor neuropathy expands the phenotypic spectrum of AIFM1 mutations and therefore, the AIFM1 gene should be considered in the diagnosis of hereditary motor neuropathies.