Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vincenzo Magliulo is active.

Publication


Featured researches published by Vincenzo Magliulo.


Environmental Research Letters | 2012

An underestimated role of precipitation frequency in regulating summer soil moisture

Chaoyang Wu; Jing M. Chen; Jukka Pumpanen; Alessandro Cescatti; Barbara Marcolla; Peter D. Blanken; Jonas Ardö; Yanhong Tang; Vincenzo Magliulo; Teodoro Georgiadis; H. Soegaard; David R. Cook; Richard Harding

Soil moisture induced droughts are expected to become more frequent under future global climate change. Precipitation has been previously assumed to be mainly responsible for variability in summer soil moisture. However, little is known about the impacts of precipitation frequency on summer soil moisture, either interannually or spatially. To better understand the temporal and spatial drivers of summer drought, 415 site yr measurements observed at 75 flux sites world wide were used to analyze the temporal and spatial relationships between summer soil water content (SWC) and the precipitation frequencies at various temporal scales, i.e., from half-hourly, 3, 6, 12 and 24 h measurements. Summer precipitation was found to be an indicator of interannual SWC variability with r of 0.49 (p < 0.001) for the overall dataset. However, interannual variability in summer SWC was also significantly correlated with the five precipitation frequencies and the sub-daily precipitation frequencies seemed to explain the interannual SWC variability better than the total of precipitation. Spatially, all these precipitation frequencies were better indicators of summer SWC than precipitation totals, but these better performances were only observed in non-forest ecosystems. Our results demonstrate that precipitation frequency may play an important role in regulating both interannual and spatial variations of summer SWC, which has probably been overlooked or underestimated. However, the spatial interpretation should carefully consider other factors, such as the plant functional types and soil characteristics of diverse ecoregions.


Rangeland Ecology & Management | 2010

Productivity, Respiration, and Light-Response Parameters of World Grassland and Agroecosystems Derived From Flux-Tower Measurements

Tagir G. Gilmanov; Luis Miguel Igreja Aires; Zoltán Barcza; V. S. Baron; L. Belelli; Jason Beringer; David P. Billesbach; Damien Bonal; James A. Bradford; Eric Ceschia; David R. Cook; Chiara A. R. Corradi; Albert B. Frank; Damiano Gianelle; Cristina Gimeno; T. Gruenwald; Haiqiang Guo; Niall P. Hanan; László Haszpra; J. Heilman; A. Jacobs; Michael Jones; Douglas A. Johnson; Gerard Kiely; Shenggong Li; Vincenzo Magliulo; E.J. Moors; Zoltán Nagy; M. Nasyrov; Clenton E. Owensby

Abstract Grasslands and agroecosystems occupy one-third of the terrestrial area, but their contribution to the global carbon cycle remains uncertain. We used a set of 316 site-years of CO2 exchange measurements to quantify gross primary productivity, respiration, and light-response parameters of grasslands, shrublands/savanna, wetlands, and cropland ecosystems worldwide. We analyzed data from 72 global flux-tower sites partitioned into gross photosynthesis and ecosystem respiration with the use of the light-response method (Gilmanov, T. G., D. A. Johnson, and N. Z. Saliendra. 2003. Growing season CO2 fluxes in a sagebrush-steppe ecosystem in Idaho: Bowen ratio/energy balance measurements and modeling. Basic and Applied Ecology 4:167–183) from the RANGEFLUX and WORLDGRASSAGRIFLUX data sets supplemented by 46 sites from the FLUXNET La Thuile data set partitioned with the use of the temperature-response method (Reichstein, M., E. Falge, D. Baldocchi, D. Papale, R. Valentini, M. Aubinet, P. Berbigier, C. Bernhofer, N. Buchmann, M. Falk, T. Gilmanov, A. Granier, T. Grünwald, K. Havránková, D. Janous, A. Knohl, T. Laurela, A. Lohila, D. Loustau, G. Matteucci, T. Meyers, F. Miglietta, J. M. Ourcival, D. Perrin, J. Pumpanen, S. Rambal, E. Rotenberg, M. Sanz, J. Tenhunen, G. Seufert, F. Vaccari, T. Vesala, and D. Yakir. 2005. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology 11:1424–1439). Maximum values of the quantum yield (α  =  75 mmol · mol−1), photosynthetic capacity (Amax  =  3.4 mg CO2 · m−2 · s−1), gross photosynthesis (Pg,max  =  116 g CO2 · m−2 · d−1), and ecological light-use efficiency (εecol  =  59 mmol · mol−1) of managed grasslands and high-production croplands exceeded those of most forest ecosystems, indicating the potential of nonforest ecosystems for uptake of atmospheric CO2. Maximum values of gross primary production (8 600 g CO2 · m−2 · yr−1), total ecosystem respiration (7 900 g CO2 · m−2 · yr−1), and net CO2 exchange (2 400 g CO2 · m−2 · yr−1) were observed for intensively managed grasslands and high-yield crops, and are comparable to or higher than those for forest ecosystems, excluding some tropical forests. On average, 80% of the nonforest sites were apparent sinks for atmospheric CO2, with mean net uptake of 700 g CO2 · m−2 · yr−1 for intensive grasslands and 933 g CO2 · m−2 · d−1 for croplands. However, part of these apparent sinks is accumulated in crops and forage, which are carbon pools that are harvested, transported, and decomposed off site. Therefore, although agricultural fields may be predominantly sinks for atmospheric CO2, this does not imply that they are necessarily increasing their carbon stock.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Joint control of terrestrial gross primary productivity by plant phenology and physiology

Jianyang Xia; Shuli Niu; Philippe Ciais; Ivan A. Janssens; Jiquan Chen; C. Ammann; Altaf Arain; Peter D. Blanken; Alessandro Cescatti; Damien Bonal; Nina Buchmann; Peter James Curtis; Shiping Chen; Jinwei Dong; Lawrence B. Flanagan; Christian Frankenberg; Teodoro Georgiadis; Christopher M. Gough; Dafeng Hui; Gerard Kiely; Jianwei Li; Magnus Lund; Vincenzo Magliulo; Barbara Marcolla; Lutz Merbold; Leonardo Montagnani; E.J. Moors; Jørgen E. Olesen; Shilong Piao; Antonio Raschi

Significance Terrestrial gross primary productivity (GPP), the total photosynthetic CO2 fixation at ecosystem level, fuels all life on land. However, its spatiotemporal variability is poorly understood, because GPP is determined by many processes related to plant phenology and physiological activities. In this study, we find that plant phenological and physiological properties can be integrated in a robust index—the product of the length of CO2 uptake period and the seasonal maximal photosynthesis—to explain the GPP variability over space and time in response to climate extremes and during recovery after disturbance. Terrestrial gross primary productivity (GPP) varies greatly over time and space. A better understanding of this variability is necessary for more accurate predictions of the future climate–carbon cycle feedback. Recent studies have suggested that variability in GPP is driven by a broad range of biotic and abiotic factors operating mainly through changes in vegetation phenology and physiological processes. However, it is still unclear how plant phenology and physiology can be integrated to explain the spatiotemporal variability of terrestrial GPP. Based on analyses of eddy–covariance and satellite-derived data, we decomposed annual terrestrial GPP into the length of the CO2 uptake period (CUP) and the seasonal maximal capacity of CO2 uptake (GPPmax). The product of CUP and GPPmax explained >90% of the temporal GPP variability in most areas of North America during 2000–2010 and the spatial GPP variation among globally distributed eddy flux tower sites. It also explained GPP response to the European heatwave in 2003 (r2 = 0.90) and GPP recovery after a fire disturbance in South Dakota (r2 = 0.88). Additional analysis of the eddy–covariance flux data shows that the interbiome variation in annual GPP is better explained by that in GPPmax than CUP. These findings indicate that terrestrial GPP is jointly controlled by ecosystem-level plant phenology and photosynthetic capacity, and greater understanding of GPPmax and CUP responses to environmental and biological variations will, thus, improve predictions of GPP over time and space.


Science of The Total Environment | 2016

A modeling study on mitigation of N2O emissions and NO3 leaching at different agricultural sites across Europe using LandscapeDNDC

Saúl Molina-Herrera; Edwin Haas; Steffen Klatt; David Kraus; Jürgen Augustin; Vincenzo Magliulo; Tiphaine Tallec; Eric Ceschia; C. Ammann; Benjamin Loubet; U. Skiba; S.K. Jones; Christian Brümmer; Klaus Butterbach-Bahl; Ralf Kiese

The identification of site-specific agricultural management practices in order to maximize yield while minimizing environmental nitrogen losses remains in the center of environmental pollution research. Here, we used the biogeochemical model LandscapeDNDC to explore different agricultural practices with regard to their potential to reduce soil N2O emissions and NO3 leaching while maintaining yields. In a first step, the model was tested against observations of N2O emissions, NO3 leaching, soil micrometeorology as well as crop growth for eight European cropland and grassland sites. Across sites, LandscapeDNDC predicts very well mean N2O emissions (r(2)=0.99) and simulates the magnitude and general temporal dynamics of soil inorganic nitrogen pools. For the assessment of site-specific mitigation potentials of environmental nitrogen losses a Monte Carlo optimization technique considering different agricultural management options (i.e., timing of planting, harvest and fertilization, amount of applied fertilizer as well as residue management) was used. The identified optimized field management practices reduce N2O emissions and NO3 leaching from croplands on average by 21% and 31%, respectively. Likewise, average reductions of 55% for N2O emissions and 16% for NO3 leaching are estimated for grasslands. For mitigating environmental loss - while maintaining yield levels - it was most important to reduce fertilizer application rates by in average 10%. Our analyses indicate that yield scaled N2O emissions and NO3 leaching indicate possible improvements of nitrogen use efficiencies in European farming systems. Moreover, the applied optimization approach can be used also in a prognostic way to predict optimal timings and fertilization options (rates and splitting) upon accurate weather forecasts combined with the knowledge of modeled soil nutrient availability and plant nitrogen demand.


ieee aerospace conference | 2007

An Integrated Electro-Optical Payload System for Forest Fires Monitoring from Airborne Platform

Giancarlo Rufino; Antonio Moccia; Paolo Donnarumma; Marco Esposito; Vincenzo Magliulo

This paper presents the preliminary results obtained within a research project aimed at the development of a remote sensing system for forest fires monitoring in missions of compact airborne platforms. The core of the system is an integrated, multi-/hyper-spectral suite of electro-optical sensors. They were selected to get enhanced ability in forest fire detection and monitoring. The system is completed by a dedicated on-board computer for sensor control. It is capable of autonomous operation and it is also in charge of data exchange with the on-board navigation and flight control system. Two different configurations are described, relevant to different aircrafts: a mini UAV and a certified, two-seat light aircraft. Results of the first flight experiments are presented, that highlight performance achievable by the system.


Remote Sensing | 2016

How Universal Is the Relationship between Remotely Sensed Vegetation Indices and Crop Leaf Area Index? A Global Assessment

Yanghui Kang; Mutlu Ozdogan; Samuel C. Zipper; Miguel O. Román; Jeffrey P. Walker; Suk Young Hong; Michael Marshall; Vincenzo Magliulo; J. Moreno; Luis Alonso; Akira Miyata; Bruce A. Kimball; Steven P. Loheide

Leaf Area Index (LAI) is a key variable that bridges remote sensing observations to the quantification of agroecosystem processes. In this study, we assessed the universality of the relationships between crop LAI and remotely sensed Vegetation Indices (VIs). We first compiled a global dataset of 1459 in situ quality-controlled crop LAI measurements and collected Landsat satellite images to derive five different VIs including Simple Ratio (SR), Normalized Difference Vegetation Index (NDVI), two versions of the Enhanced Vegetation Index (EVI and EVI2), and Green Chlorophyll Index (CIGreen). Based on this dataset, we developed global LAI-VI relationships for each crop type and VI using symbolic regression and Theil-Sen (TS) robust estimator. Results suggest that the global LAI-VI relationships are statistically significant, crop-specific, and mostly non-linear. These relationships explain more than half of the total variance in ground LAI observations (R2 >0.5), and provide LAI estimates with RMSE below 1.2 m2/m2. Among the five VIs, EVI/EVI2 are the most effective, and the crop-specific LAI-EVI and LAI-EVI2 relationships constructed by TS, are robust when tested by three independent validation datasets of varied spatial scales. While the heterogeneity of agricultural landscapes leads to a diverse set of local LAI-VI relationships, the relationships provided here represent global universality on an average basis, allowing the generation of large-scale spatial-explicit LAI maps. This study contributes to the operationalization of large-area crop modeling and, by extension, has relevance to both fundamental and applied agroecosystem research.


Plant Biosystems | 2011

Gas exchange and leaf metabolism of irrigated maize at different growth stages

L. Vitale; C. Arena; P. Carillo; P. di Tommasi; B. Mesolella; F. Nacca; A. Virzo De Santo; Amodio Fuggi; Vincenzo Magliulo

Abstract Net ecosystem exchange (NEE), leaf gas exchange and biochemical traits were investigated in an irrigated maize crop grown under Mediterranean conditions. Sub-optimal irrigation water supply determined a drought stress during the early vegetative growth stage (45–49 days after swing) that decreased NEE. Drought, in the late vegetative stage, also caused a reduction of leaf gas exchange. In the latter period, proline, glycine and serine, as well as sucrose leaf contents increased, while starch, proteins and glucose contents decreased. In the early reproductive stage, the crop experienced a longer dry spell that induced a reduction in canopy as well as in leaf gas exchanges, while protein and free amino acid contents decreased with respect to the late vegetative stage. Both ecophysiological and biochemical data demonstrate a good capacity of cultivar Pioneer PR32D99 to endure the environmental stress, related to Mediterranean summer drought, leading to an elevated dry matter yield at harvest. Photosynthetic apparatus appeared fairly resistant to soil water shortage due likely to the increased leaf content of organic solutes, such as amino acids and soluble sugars.


Acta Physiologiae Plantarum | 2009

Growth and gas exchange response to water shortage of a maize crop on different soil types

L. Vitale; Paul Di Tommasi; C. Arena; Michele Riondino; Annachiara Forte; Angelo Verlotta; Angelo Fierro; Amalia Virzo De Santo; Amodio Fuggi; Vincenzo Magliulo

The effect of water shortage on growth and gas exchange of maize grown on sandy soil (SS) and clay soil was studied. The lower soil water content in the SS during vegetative growth stages did not affect plant height, above-ground biomass, and leaf area index (LAI). LAI reduction was observed on the SS during the reproductive stage due to early leaf senescence. Canopy and leaf gas exchanges, measured by eddy correlation technique and by a portable photosynthetic system, respectively, were affected by water stress and a greater reduction in net photosynthetic rate (AN) and stomatal conductance (gs) was observed on SS. Chlorophyll and carotenoids content was not affected by water shortage in either condition. Results support two main conclusions: (1) leaf photosynthetic capacity was unaffected by water stress, and (2) maize effectively endured water shortage during the vegetative growth stage.


Science of The Total Environment | 2017

Quantifying deforestation and forest degradation with thermal response

Hua Lin; Yajun Chen; Qinghai Song; Peili Fu; James Cleverly; Vincenzo Magliulo; Beverly E. Law; Christopher M. Gough; Lukas Hörtnagl; Filippo Di Gennaro; Giorgio Matteucci; Leonardo Montagnani; Pierpaolo Duce; Changliang Shao; Tomomichi Kato; Damien Bonal; Eugénie Paul-Limoges; Jason Beringer; John Grace; Ze-Xin Fan

Deforestation and forest degradation cause the deterioration of resources and ecosystem services. However, there are still no operational indicators to measure forest status, especially for forest degradation. In the present study, we analysed the thermal response number (TRN, calculated by daily total net radiation divided by daily temperature range) of 163 sites including mature forest, disturbed forest, planted forest, shrubland, grassland, savanna vegetation and cropland. TRN generally increased with latitude, however the regression of TRN against latitude differed among vegetation types. Mature forests are superior as thermal buffers, and had significantly higher TRN than disturbed and planted forests. There was a clear boundary between TRN of forest and non-forest vegetation (i.e. grassland and savanna) with the exception of shrubland, whose TRN overlapped with that of forest vegetation. We propose to use the TRN of local mature forest as the optimal TRN (TRNopt). A forest with lower than 75% of TRNopt was identified as subjected to significant disturbance, and forests with 66% of TRNopt was the threshold for deforestation within the absolute latitude from 30° to 55°. Our results emphasized the irreplaceable thermal buffer capacity of mature forest. TRN can be used for early warning of deforestation and degradation risk. It is therefore a valuable tool in the effort to protect forests and prevent deforestation.


Science of The Total Environment | 2018

Composition and emission of VOC from biogas produced by illegally managed waste landfills in Giugliano (Campania, Italy) and potential impact on the local population

Giulia Carriero; Luisa Neri; Daniela Famulari; Sara Di Lonardo; Daniela Piscitelli; Antonio Manco; Andrea Esposito; Adriano Chirico; Osvaldo Facini; Sandro Finardi; G. Tinarelli; Rossella Prandi; Alessandro Zaldei; Carolina Vagnoli; Piero Toscano; Vincenzo Magliulo; Paolo Ciccioli; Rita Baraldi

The composition in Volatile Organic Compounds (VOC) of the biogas produced by seven landfills of Giugliano (Naples, Campania, Italy) was determined and VOC emission rates assessed to verify if these compounds represent a potential threat to the population living nearby. VOC composition in the biogas could not be predicted, as heterogeneous waste was dumped from the late 1980s to the early 2000s and then underwent biological degradation. No data are available on the amount and composition of VOC in the biogas before the landfills closure as no operational biogas collection system was present. In this study, VOC composition was determined by gas chromatography-mass spectrometry (GC-MS), after collecting samples from collection pipes and from soil fractures in cover soil or capping. Individual VOC were quantified and data compared with those collected at two landfills in Latium, when they were still in operation. Relevant differences were observed, mainly due to waste aging, but no specific VOC revealing toxic waste dumping was found, although the concurrent presence of certain compounds suggested that dumping of industrial wastes might have occurred. The average VOC emission was assessed and a dispersion model was run to find out if the emitted plume could affect the health of population. The results suggested that fugitive emissions did not represent a serious danger, since the concentrations simulated at the neighboring cities were below the threshold limits for acute and chronic diseases. However, VOC plume could cause annoyance at night when the steady state conditions of the atmosphere enhance pollutants accumulation in the lower layers. In addition, some of the emitted VOC, such as alkylbenzenes and monoterpenes, can contribute to tropospheric ozone formation.

Collaboration


Dive into the Vincenzo Magliulo's collaboration.

Top Co-Authors

Avatar

L. Vitale

National Research Council

View shared research outputs
Top Co-Authors

Avatar

E.J. Moors

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Leonardo Montagnani

Free University of Bozen-Bolzano

View shared research outputs
Top Co-Authors

Avatar

C. Arena

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Eric Ceschia

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

P. Di Tommasi

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Di Tommasi

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Gerard Kiely

University College Cork

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge