Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vincenzo Martorana is active.

Publication


Featured researches published by Vincenzo Martorana.


Biophysical Journal | 2009

Branching in Amyloid Fibril Growth

Christian Beyschau Andersen; Hisashi Yagi; Mauro Manno; Vincenzo Martorana; Tadato Ban; Gunna Christiansen; Daniel E. Otzen; Yuji Goto; Christian Rischel

Using the peptide hormone glucagon and Abeta(1-40) as model systems, we have sought to elucidate the mechanisms by which fibrils grow and multiply. We here present real-time observations of growing fibrils at a single-fibril level. Growing from preformed seeds, glucagon fibrils were able to generate new fibril ends by continuously branching into new fibrils. To our knowledge, this is the first time amyloid fibril branching has been observed in real-time. Glucagon fibrils formed by branching always grew in the forward direction of the parent fibril with a preferred angle of 35-40 degrees . Furthermore, branching never occurred at the tip of the parent fibril. In contrast, in a previous study by some of us, Abeta(1-40) fibrils grew exclusively by elongation of preformed seeds. Fibrillation kinetics in bulk solution were characterized by light scattering. A growth process with branching, or other processes that generate new ends from existing fibrils, should theoretically give rise to different fibrillation kinetics than growth without such a process. We show that the effect of adding seeds should be particularly different in the two cases. Our light-scattering data on glucagon and Abeta(1-40) confirm this theoretical prediction, demonstrating the central role of fibril-dependent nucleation in amyloid fibril growth.


Journal of Biological Chemistry | 2005

Protofibril Formation of Amyloid β-Protein at Low pH via a Non-cooperative Elongation Mechanism

Rita Carrotta; Mauro Manno; Donatella Bulone; Vincenzo Martorana; Pier Luigi San Biagio

Deposition of the amyloid β-protein (Aβ) in senile or diffuse plaques is a distinctive feature of Alzheimers disease. The role of Aβ aggregates in the etiology of the disease is still controversial. The formation of linear aggregates, known as amyloid fibrils, has been proposed as the onset and the cause of pathological deposition. Yet, recent findings suggest that a more crucial role is played by prefibrillar oligomeric assemblies of Aβ that are highly toxic in the extracellular environment. In the present work, the mechanism of protofibril formation is studied at pH 3.1, starting from a solution of oligomeric precursors. By combining static light scattering and photon correlation spectroscopy, the growth of the mass and the size of aggregates are determined at different temperatures. Analysis and scaling of kinetic data reveal that under the studied conditions protofibrils are formed via a single non-cooperative elongation mechanism, not prompted by nucleation. This process is well described as a linear colloidal aggregation due to diffusion and coalescence of growing aggregates. The rate of elongation follows an Arrhenius law with an activation enthalpy of 15 kcal mol–1. Such a value points to a conformational change of peptides or oligomers being involved in binding to protofibrils or in general to a local reorganization of each aggregate. These results contribute to establishing a clearer relation at the molecular level between the fibrillation mechanism and fibrillar precursors. The observation of a non-cooperative aggregation pathway supports the hypothesis that amyloid formation may represent an escape route from a dangerous condition, induced by the presence of toxic oligomeric species.


Protein Science | 2010

Aggregation of a multidomain protein: a coagulation mechanism governs aggregation of a model IgG1 antibody under weak thermal stress.

Christian Beyschau Andersen; Mauro Manno; Christian Rischel; Matthias Thorolfsson; Vincenzo Martorana

Using an IgG1 antibody as a model system, we have studied the mechanisms by which multidomain proteins aggregate at physiological pH when incubated at temperatures just below their lowest thermal transition. In this temperature interval, only minor changes to the protein conformation are observed. Light scattering consistently showed two coupled phases: an initial fast phase followed by several hours of exponential growth of the scattered intensity. This is the exact opposite of the lag‐time behavior typically observed in protein fibrillation. Dynamic light scattering showed the rapid formation of an aggregate species with a hydrodynamic radius of about 25 nm, which then increased in size throughout the experiment. Theoretical analysis of our light scattering data showed that the aggregate number density goes through a maximum in time providing compelling evidence for a coagulation mechanism in which aggregates fuse together. Both the analysis as well as size‐exclusion chromatography of incubated samples showed the actual increase in aggregate mass to be linear and reach saturation long before all molecules had been converted to aggregates. The CH2 domain is the only domain partly unfolded in the temperature interval studied, suggesting a pivotal role of this least stable domain in the aggregation process. Our results show that for multidomain proteins at temperatures below their thermal denaturation, transient unfolding of a single domain can prime the molecule for aggregation, and that the formation of large aggregates is driven by coagulation.


Protein Science | 2008

NMR and molecular dynamics studies of the interaction of melatonin with calmodulin

Adrián G. Turjanski; Darío A. Estrin; Ruth E. Rosenstein; John McCormick; Stephen R. Martin; Annalisa Pastore; Rodolfo R. Biekofsky; Vincenzo Martorana

Pineal hormone melatonin (N‐acetyl‐5‐methoxytryptamine) is thought to modulate the calcium/calmodulin signaling pathway either by changing intracellular Ca2+ concentration via activation of its G‐protein–coupled membrane receptors, or through a direct interaction with calmodulin (CaM). The present work studies the direct interaction of melatonin with intact calcium‐saturated CaM both experimentally, by fluorescence and nuclear magnetic resonance spectroscopies, and theoretically, by molecular dynamics simulations. The analysis of the experimental data shows that the interaction is calcium‐dependent. The affinity, as obtained from monitoring 15N and 1H chemical shift changes for a melatonin titration, is weak (in the millimolar range) and comparable for the N‐ and C‐terminal domains. Partial replacement of diamagnetic Ca2+ by paramagnetic Tb3+ allowed the measurement of interdomain NMR pseudocontact shifts and residual dipolar couplings, indicating that each domain movement in the complex is not correlated with the other one. Molecular dynamics simulations allow us to follow the dynamics of melatonin in the binding pocket of CaM. Overall, this study provides an example of how a combination of experimental and theoretical approaches can shed light on a weakly interacting system of biological and pharmacological significance.


Journal of Physical Chemistry B | 2014

Protein-protein interactions in dilute to concentrated solutions: α-chymotrypsinogen in acidic conditions.

Marco A. Blanco; Tatiana Perevozchikova; Vincenzo Martorana; Mauro Manno; Christopher J. Roberts

Protein–protein interactions were investigated for α-chymotrypsinogen by static and dynamic light scattering (SLS and DLS, respectively), as well as small-angle neutron scattering (SANS), as a function of protein and salt concentration at acidic conditions. Net protein–protein interactions were probed via the Kirkwood–Buff integral G22 and the static structure factor S(q) from SLS and SANS data. G22 was obtained by regressing the Rayleigh ratio versus protein concentration with a local Taylor series approach, which does not require one to assume the underlying form or nature of intermolecular interactions. In addition, G22 and S(q) were further analyzed by traditional methods involving fits to effective interaction potentials. Although the fitted model parameters were not always physically realistic, the numerical values for G22 and S(q → 0) were in good agreement from SLS and SANS as a function of protein concentration. In the dilute regime, fitted G22 values agreed with those obtained via the osmotic second virial coefficient B22 and showed that electrostatic interactions are the dominant contribution for colloidal interactions in α-chymotrypsinogen solutions. However, as protein concentration increases, the strength of protein–protein interactions decreases, with a more pronounced decrease at low salt concentrations. The results are consistent with an effective “crowding” or excluded volume contribution to G22 due to the long-ranged electrostatic repulsions that are prominent even at the moderate range of protein concentrations used here (<40 g/L). These apparent crowding effects were confirmed and quantified by assessing the hydrodynamic factor H(q → 0), which is obtained by combining measurements of the collective diffusion coefficient from DLS data with measurements of S(q → 0). H(q → 0) was significantly less than that for a corresponding hard-sphere system and showed that hydrodynamic nonidealities can lead to qualitatively incorrect conclusions regarding B22, G22, and static protein–protein interactions if one uses only DLS to assess protein interactions.


PLOS ONE | 2014

Human Hsp60 with Its Mitochondrial Import Signal Occurs in Solution as Heptamers and Tetradecamers Remarkably Stable over a Wide Range of Concentrations

Silvia Vilasi; Rita Carrotta; Maria Rosalia Mangione; Claudia Campanella; Fabio Librizzi; Loredana Randazzo; Vincenzo Martorana; Antonella Marino Gammazza; Maria Grazia Ortore; Annalisa Vilasi; Gabriella Pocsfalvi; Giosalba Burgio; Davide Corona; Antonio Palumbo Piccionello; Giovanni Zummo; Donatella Bulone; Everly Conway de Macario; Alberto J.L. Macario; Pier Luigi San Biagio; Francesco Cappello

It has been established that Hsp60 can accumulate in the cytosol in various pathological conditions, including cancer and chronic inflammatory diseases. Part or all of the cytosolic Hsp60 could be naïve, namely, bear the mitochondrial import signal (MIS), but neither the structure nor the in solution oligomeric organization of this cytosolic molecule has still been elucidated. Here we present a detailed study of the structure and self-organization of naïve cytosolic Hsp60 in solution. Results were obtained by different biophysical methods (light and X ray scattering, single molecule spectroscopy and hydrodynamics) that all together allowed us to assay a wide range of concentrations of Hsp60. We found that Naïve Hsp60 in aqueous solution is assembled in very stable heptamers and tetradecamers at all concentrations assayed, without any trace of monomer presence.


Biophysical Journal | 1997

Collective properties of hydration: long range and specificity of hydrophobic interactions

Vincenzo Martorana; D. Bulone; P.L. San Biagio; M.B. Palma-Vittorelli; M. U. Palma

We report results of molecular dynamics (MD) simulations of composite model solutes in explicit molecular water solvent, eliciting novel aspects of the recently demonstrated, strong many-body character of hydration. Our solutes consist of identical apolar (hydrophobic) elements in fixed configurations. Results show that the many-body character of PMF is sufficiently strong to cause 1) a remarkable extension of the range of hydrophobic interactions between pairs of solute elements, up to distances large enough to rule out pairwise interactions of any type, and 2) a SIF that drives one of the hydrophobic solute elements toward the solvent rather than away from it. These findings complement recent data concerning SIFs on a protein at single-residue resolution and on model systems. They illustrate new important consequences of the collective character of hydration and of PMF and reveal new aspects of hydrophobic interactions and, in general, of SIFs. Their relevance to protein recognition, conformation, function, and folding and to the observed slight yet significant nonadditivity of functional effects of distant point mutations in proteins is discussed. These results point out the functional role of the configurational and dynamical states (and related statistical weights) corresponding to the complex configurational energy landscape of the two interacting systems: biomolecule + water.


European Biophysics Journal | 1998

Physics and biophysics of solvent induced forces: hydrophobic interactions and context-dependent hydration

P.L. San Biagio; D. Bulone; Vincenzo Martorana; M.B. Palma-Vittorelli; M.U. Palma

Abstract Solvent induced forces (SIFs) among solutes derive from solvent structural modification due to solutes, and consequent thermodynamic drive towards minimization of related free energy costs. The role of SIFs in biomolecular conformation and function is appreciated by observing that typical SIF values fall within the 20–200 pN interval, and that proteins are stable by only a few kcal mol–1 (1 kcal mol–1 corresponds to 70 pN Å). Here we study SIFs, in systems of increasing complexity, using Molecular Dynamics (MD) simulations which give time- and space-resolved details on the biologically significant scale of single protein residues and sidechains. Of particular biological relevance among our results are a strong modulability of hydrophobic SIFs by electric charges and the dependence of this modulability upon charge sign. More generally, the present results extend our understanding of the recently reported strong context-dependence of SIFs and the related potential of mean force (PMF). This context-dependence can be strong enough to propagate (by relay action) along a composite solute, and to reverse SIFs acting on a given element, relative to expectations based on its specific character (hydrophobic/ philic, charged). High specificity such as that of SIFs highlighted by the present results is of course central to biological function. Biological implications of the present results cover issues such as biomolecular functional interactions and folding (including chaperoning and pathological conformational changes), coagulation, molecular recognition, effects of phosphorylation and more.


Langmuir | 2010

Amyloid gels: precocious appearance of elastic properties during the formation of an insulin fibrillar network.

Mauro Manno; Daniela Giacomazza; Jay Newman; Vincenzo Martorana; Pier Luigi San Biagio

The formation of insulin amyloid fibrils is important not only for the development of reliable drugs but also for modeling the basic properties of protein self-assembly. Fibrillation kinetics is typically characterized by an initial apparent lag phase related to the formation of oligomers, protofibrils, and aggregation nuclei. Afterwards, aggregation proceeds over a wide range of length scales via fibril elongation, thickening, and/or flocculation and eventual gelation. By light scattering and rheological techniques, we reveal the structural details hidden in the apparent lag phase and we show the unexpected appearance of noteworthy elastic properties concurrently with initial fibril nucleation and elongation preceding the formation of the larger structures and the gel network.


Journal of Physical Chemistry B | 2011

Existence of Metastable Intermediate Lysozyme Conformation Highlights the Role of Alcohols in Altering Protein Stability

Michele D’Amico; Samuele Raccosta; Marco Cannas; Vincenzo Martorana; Mauro Manno

Alcohols have a manifold effect on the conformational and thermodynamic stability of native proteins. Here, we study the effect of moderate concentrations of trifluoroethanol (TFE) on the thermal stability of hen egg-white lysozyme (HEWL), by far-UV circular dichroism and by steady-state and time-resolved photoluminescence of intrinsic tryptophans. Our results highlight that TFE affects lysozyme stability by preferential solvation of the protein molecule. Furthermore, we discovered the existence at 20% TFE of an equilibrium partially folded state of lysozyme, intermediate between the native and the unfolded state. A three-state model is therefore used to interpolate the thermal denaturation data. Our analysis explains how the stabilization of the intermediate conformation enhances the entropic contribution to unfolding, and thus decreases the unfolding temperature, while, at the same time, TFE enhances the conformational stability of the native fold at room temperature. Eventually, we challenged the ability of these intermediate structures to form supramolecular aggregates by heating experiments at different TFE concentrations.

Collaboration


Dive into the Vincenzo Martorana's collaboration.

Top Co-Authors

Avatar

Mauro Manno

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Bulone

University of Palermo

View shared research outputs
Top Co-Authors

Avatar

Rita Carrotta

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rosina Noto

National Research Council

View shared research outputs
Top Co-Authors

Avatar

P.L. San Biagio

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge