Vineeth Nair
Indian Institute of Technology Madras
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vineeth Nair.
International Journal of Spray and Combustion Dynamics | 2013
Vineeth Nair; Gireehkumaran Thampi; Sulochana Karuppusamy; Saravanan Gopalan; R. I. Sujith
Combustion noise has been traditionally thought of as stochastic fluctuations present in the background of the dynamics in combustors amongst the flow, heat release and the chamber acoustics. Through a series of determinism tests, we show that these aperiodic fluctuations are in fact chaotic of moderately high dimensions (d0 ≅ 8–10). These chaotic fluctuations then transition to high amplitude combustion instability when the operating conditions are varied towards leaner equivalence ratios. Precursors to such a transition from chaos to dynamics dominated by periodic oscillations are of interest to designers and operators of combustors in estimating the boundaries of operability. We introduce a test for chaos, known as 0–1 test for chaos in the literature, as a measure of the proximity of the combustor to an impending instability. The measure is robust and shows a smooth transition for variation in flow conditions towards instability enabling thresholds to be set for operational boundaries.
Chaos | 2013
Vineeth Nair; R. I. Sujith
In this paper, we show how the phenomenon of intermittency observed in systems with turbulent flow-sound interaction is related to the formation of homoclinic orbits in the phase space. Such orbits that emerge via the intersection of the stable and unstable manifold of an equilibrium configuration result from interactions that happen at multiple spatial/temporal scales associated with turbulent convection and wave propagation. Through a quantification of the time spent by the dynamics in the aperiodic states using recurrence plots, we show how the presence of homoclinic orbits in the dynamics may be convincingly demonstrated, which is often not possible through a visual inspection of the phase space of the attractor.
Combustion Science and Technology | 2015
Vineeth Nair; R. I. Sujith
The dynamic transitions preceding lean blowout were investigated experimentally in a laboratory scale turbulent combustor by systematically varying the flow Reynolds number . Previous studies on combustor dynamics have shown that the onset of large-amplitude, combustion-driven oscillations is, at times, presaged by intermittent bursts of high-amplitude periodic pressure pulsations. These intermittent bursts appear in a near random fashion amidst regions of aperiodic low-amplitude fluctuations, provided the underlying flow-field is turbulent. In the present study, we show that intermittent burst oscillations are also observed in combustors close to the lean blowout limit. We show that such intermittent oscillations emerge through the establishment of homoclinic orbits in the phase space of pressure oscillations. The formation of such orbits points to the complex nature of the interaction between the hydrodynamics and acoustic subsystems, which operate over a range of different time scales. High-speed flame images reveal that the intermittent states observed prior to lean blowout correspond to aperiodic detachment of the flame from the bluff-body lip. These findings are consistent with other reports of possibly intermittent states in the literature.
Combustion Theory and Modelling | 2016
Akshay Seshadri; Vineeth Nair; R. I. Sujith
Recently, there has been a growing interest in understanding and characterising intermittent burst oscillations that presage the onset of combustion instability. We construct a deterministic model to capture this intermittency route to instability in a bluff-body stabilised combustor by coupling the equations governing vortex shedding and the acoustic wave propagation in a confinement. A feedback mechanism is developed wherein the sound generated due to unsteady combustion affects the vortex shedding. This feedback leads to a variation in the time of impingement of the vortices with the bluff body causing the system to exhibit chaos, intermittency, and limit cycle oscillations. Experimental validation of the model is provided using various precursor measures that quantify the observed intermittent states.
International Journal of Aeroacoustics | 2016
Vineeth Nair; R. I. Sujith
In this study, we attempt to provide a repertoire of measures to forewarn the onset of impending flow-induced mechanical oscillations via online health monitoring. To illustrate the principles, the flow of air through a pipe terminated by a circular orifice plate is investigated at various flow velocities using a suitably placed pressure transducer. It is observed that the regimes corresponding to the production of a tone is presaged by operating conditions that display temporarily intermittent bursts of periodic pressure oscillations that emerge from a background of lower-amplitude aperiodic fluctuations. The various model-free measures prescribed in this paper serve as efficient precursors by characterizing these intermittent states, which can potentially arise in aeroacoustic systems when the flow is highly unsteady or turbulent.
ASME Turbo Expo 2014: Turbine Technical Conference and Exposition | 2014
Vineeth Nair; Gireeshkumaran Thampi; R. I. Sujith
The present study aims at arming an operator of fielded turbulent combustors with a repertoire of mathematical measures for real-time monitoring to forewarn the onset of impending combustion instability. In turbulent combustors, the route to high-amplitude, periodic, combustion-driven oscillations from conditions of low-amplitude, chaotic, combustion noise happens through an intermediate regime in flow conditions where the measured pressure fluctuations display bursts of intermittent, high-amplitude, periodic oscillations that appear in a near-random manner amidst chaotic fluctuations. This loss of chaos from combustion noise to combustion instability can be quantified to serve as a precursor to impending instability. The recurrence properties of intermittent burst oscillations can be quantified using dynamical systems theory by tracking the distribution of the aperiodic segments in the measured signals. Several statistical measures may be constructed through such recurrence quantification that provide robust early warning signals to an impending instability. Further, the transition to combustion driven oscillations leads to a collapse of the number of relevant time scales involved in the problem. This collapse in time scales can be quantified using generalized Hurst exponents which serve as an additional measure that captures the onset of an impending combustion instability well in advance. The various patent pending measures illustrated in this paper serve as precursors due to the inevitable presence of an intermittent regime of burst oscillations in turbulent combustors.Copyright
ASME Turbo Expo 2014: Turbine Technical Conference and Exposition | 2014
Vineeth Nair; R. I. Sujith
The dynamic transitions preceding combustion instability and lean blowout were investigated experimentally in a laboratory scale turbulent combustor by systematically varying the flow Reynolds number. We observe that the onset of combustion-driven oscillations is always presaged by intermittent bursts of high-amplitude periodic oscillations that appear in a near random fashion amidst regions of aperiodic, low-amplitude fluctuations. The onset of high-amplitude, combustion-driven oscillations in turbulent combustors thus corresponds to a transition in dynamics from chaos to limit cycle oscillations through a state characterized as intermittency in dynamical systems theory. These excursions to periodic oscillations become last longer in time as operating conditions approach instability and finally the system transitions completely into periodic oscillations. Such intermittent oscillations emerge through the establishment of homoclinic orbits in the phase space of the global system which is composed of hydrodynamic and acoustic subsystems that operate over different time scales. Such intermittent burst oscillations are also observed in the combustor on increasing the Reynolds number further past conditions of combustion instability towards the lean blowout limit. High-speed flame images reveal that the intermittent states observed prior to lean blowout correspond to aperiodic detachment of the flame from the bluff-body lip. These intermittent oscillations are thus of prognostic value and can be utilized to provide early warning signals to combustion instability as well as lean blowout.Copyright
Journal of Fluid Mechanics | 2014
Vineeth Nair; Gireeshkumaran Thampi; R. I. Sujith
Journal of Fluid Mechanics | 2014
Vineeth Nair; R. I. Sujith
Proceedings of the Combustion Institute | 2015
Vineeth Nair; R. I. Sujith