Vinh Truong
University of Toronto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vinh Truong.
Blood | 2012
Jie Huang; Maria Sabater-Lleal; Folkert W. Asselbergs; David Tregouet; So-Youn Shin; Jingzhong Ding; Jens Baumert; Tiphaine Oudot-Mellakh; Lasse Folkersen; Andrew D. Johnson; Nicholas L. Smith; Scott M. Williams; Mohammad Arfan Ikram; Marcus E. Kleber; Diane M. Becker; Vinh Truong; Josyf C. Mychaleckyj; Weihong Tang; Qiong Yang; Bengt Sennblad; Jason H. Moore; Frances M. K. Williams; Abbas Dehghan; Günther Silbernagel; Elisabeth M.C. Schrijvers; Shelly Smith; Mahir Karakas; Geoffrey H. Tofler; Angela Silveira; Gerjan Navis
We conducted a genome-wide association study to identify novel associations between genetic variants and circulating plasminogen activator inhibitor-1 (PAI-1) concentration, and examined functional implications of variants and genes that were discovered. A discovery meta-analysis was performed in 19 599 subjects, followed by replication analysis of genome-wide significant (P < 5 × 10(-8)) single nucleotide polymorphisms (SNPs) in 10 796 independent samples. We further examined associations with type 2 diabetes and coronary artery disease, assessed the functional significance of the SNPs for gene expression in human tissues, and conducted RNA-silencing experiments for one novel association. We confirmed the association of the 4G/5G proxy SNP rs2227631 in the promoter region of SERPINE1 (7q22.1) and discovered genome-wide significant associations at 3 additional loci: chromosome 7q22.1 close to SERPINE1 (rs6976053, discovery P = 3.4 × 10(-10)); chromosome 11p15.2 within ARNTL (rs6486122, discovery P = 3.0 × 10(-8)); and chromosome 3p25.2 within PPARG (rs11128603, discovery P = 2.9 × 10(-8)). Replication was achieved for the 7q22.1 and 11p15.2 loci. There was nominal association with type 2 diabetes and coronary artery disease at ARNTL (P < .05). Functional studies identified MUC3 as a candidate gene for the second association signal on 7q22.1. In summary, SNPs in SERPINE1 and ARNTL and an SNP associated with the expression of MUC3 were robustly associated with circulating levels of PAI-1.
PLOS Genetics | 2013
Sophie Garnier; Vinh Truong; Jessy Brocheton; Tanja Zeller; Maxime Rovital; Philipp S. Wild; Andreas Ziegler; Thomas Münzel; Laurence Tiret; Stefan Blankenberg; Panos Deloukas; J. Erdmann; Christian Hengstenberg; Nilesh J. Samani; Heribert Schunkert; Willem H. Ouwehand; Alison H. Goodall; François Cambien; David-Alexandre Trégouët
In order to assess whether gene expression variability could be influenced by several SNPs acting in cis, either through additive or more complex haplotype effects, a systematic genome-wide search for cis haplotype expression quantitative trait loci (eQTL) was conducted in a sample of 758 individuals, part of the Cardiogenics Transcriptomic Study, for which genome-wide monocyte expression and GWAS data were available. 19,805 RNA probes were assessed for cis haplotypic regulation through investigation of ∼2,1×109 haplotypic combinations. 2,650 probes demonstrated haplotypic p-values >104-fold smaller than the best single SNP p-value. Replication of significant haplotype effects were tested for 412 probes for which SNPs (or proxies) that defined the detected haplotypes were available in the Gutenberg Health Study composed of 1,374 individuals. At the Bonferroni correction level of 1.2×10−4 (∼0.05/412), 193 haplotypic signals replicated. 1000G imputation was then conducted, and 105 haplotypic signals still remained more informative than imputed SNPs. In-depth analysis of these 105 cis eQTL revealed that at 76 loci genetic associations were compatible with additive effects of several SNPs, while for the 29 remaining regions data could be compatible with a more complex haplotypic pattern. As 24 of the 105 cis eQTL have previously been reported to be disease-associated loci, this work highlights the need for conducting haplotype-based and 1000G imputed cis eQTL analysis before commencing functional studies at disease-associated loci.
PLOS ONE | 2011
Raphaële Castagné; Maxime Rotival; Tanja Zeller; Philipp S. Wild; Vinh Truong; David-Alexandre Trégouët; Thomas Münzel; Andreas Ziegler; François Cambien; Stefan Blankenberg; Laurence Tiret
Background The hypothesis of dosage compensation of genes of the X chromosome, supported by previous microarray studies, was recently challenged by RNA-sequencing data. It was suggested that microarray studies were biased toward an over-estimation of X-linked expression levels as a consequence of the filtering of genes below the detection threshold of microarrays. Methodology/Principal Findings To investigate this hypothesis, we used microarray expression data from circulating monocytes in 1,467 individuals. In total, 25,349 and 1,156 probes were unambiguously assigned to autosomes and the X chromosome, respectively. Globally, there was a clear shift of X-linked expressions toward lower levels than autosomes. We compared the ratio of expression levels of X-linked to autosomal transcripts (X∶AA) using two different filtering methods: 1. gene expressions were filtered out using a detection threshold irrespective of gene chromosomal location (the standard method in microarrays); 2. equal proportions of genes were filtered out separately on the X and on autosomes. For a wide range of filtering proportions, the X∶AA ratio estimated with the first method was not significantly different from 1, the value expected if dosage compensation was achieved, whereas it was significantly lower than 1 with the second method, leading to the rejection of the hypothesis of dosage compensation. We further showed in simulated data that the choice of the most appropriate method was dependent on biological assumptions regarding the proportion of actively expressed genes on the X chromosome comparative to the autosomes and the extent of dosage compensation. Conclusion/Significance This study shows that the method used for filtering out lowly expressed genes in microarrays may have a major impact according to the hypothesis investigated. The hypothesis of dosage compensation of X-linked genes cannot be firmly accepted or rejected using microarray-based data.
PLOS ONE | 2015
Christine Poitou; Claire Perret; François Mathieu; Vinh Truong; Yuna Blum; Hervé Durand; Rohia Alili; Nadjim Chelghoum; Véronique Pelloux; Judith Aron-Wisnewsky; Adriana Torcivia; Jean-Luc Bouillot; Brian W. Parks; Ewa Ninio; Karine Clément; Laurence Tiret
Background Bariatric surgery is associated to improvements in obesity-associated comorbidities thought to be mediated by a decrease of adipose inflammation. However, the molecular mechanisms behind these beneficial effects are poorly understood. Methodology/Principal Findings We analyzed RNA-seq expression profiles in adipose tissue from 22 obese women before and 3 months after surgery. Of 15,972 detected genes, 1214 were differentially expressed after surgery at a 5% false discovery rate. Upregulated genes were mostly involved in the basal cellular machinery. Downregulated genes were enriched in metabolic functions of adipose tissue. At baseline, 26 modules of coexpressed genes were identified. The four most stable modules reflected the innate and adaptive immune responses of adipose tissue. A first module reflecting a non-specific signature of innate immune cells, mainly macrophages, was highly conserved after surgery with the exception of DUSP2 and CD300C. A second module reflected the adaptive immune response elicited by T lymphocytes; after surgery, a disconnection was observed between genes involved in T-cell signaling and mediators of the signal transduction such as CXCR1, CXCR2, GPR97, CCR7 and IL7R. A third module reflected neutrophil-mediated inflammation; after surgery, several genes were dissociated from the module, including S100A8, S100A12, CD300E, VNN2, TUBB1 and FAM65B. We also identified a dense network of 19 genes involved in the interferon-signaling pathway which was strongly preserved after surgery, with the exception of DDX60, an antiviral factor involved in RIG-I-mediated interferon signaling. A similar loss of connection was observed in lean mice compared to their obese counterparts. Conclusions/Significance These results suggest that improvements of the inflammatory state following surgery might be explained by a disruption of immuno-inflammatory cascades involving a few crucial molecules which could serve as potential therapeutic targets.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2014
Jie Huang; Jennifer E. Huffman; Munekazu Yamkauchi; Stella Trompet; Folkert W. Asselbergs; Maria Sabater-Lleal; David Tregouet; Wei-Min Chen; Nicholas L. Smith; Marcus E. Kleber; So-Youn Shin; Diane M. Becker; Weihong Tang; Abbas Dehghan; Andrew D. Johnson; Vinh Truong; Lasse Folkersen; Qiong Yang; Tiphaine Oudot-Mellkah; Brendan M. Buckley; Jason H. Moore; Frances M. K. Williams; Harry Campbell; Günther Silbernagel; Veronique Vitart; Igor Rudan; Geoffrey H. Tofler; Gerjan Navis; Anita L. DeStefano; Alan F. Wright
Objective—Tissue plasminogen activator (tPA), a serine protease, catalyzes the conversion of plasminogen to plasmin, the major enzyme responsible for endogenous fibrinolysis. In some populations, elevated plasma levels of tPA have been associated with myocardial infarction and other cardiovascular diseases. We conducted a meta-analysis of genome-wide association studies to identify novel correlates of circulating levels of tPA. Approach and Results—Fourteen cohort studies with tPA measures (N=26 929) contributed to the meta-analysis. Three loci were significantly associated with circulating tPA levels (P<5.0×10−8). The first locus is on 6q24.3, with the lead single nucleotide polymorphism (SNP; rs9399599; P=2.9×10−14) within STXBP5. The second locus is on 8p11.21. The lead SNP (rs3136739; P=1.3×10−9) is intronic to POLB and <200 kb away from the tPA encoding the gene PLAT. We identified a nonsynonymous SNP (rs2020921) in modest linkage disequilibrium with rs3136739 (r2=0.50) within exon 5 of PLAT (P=2.0×10−8). The third locus is on 12q24.33, with the lead SNP (rs7301826; P=1.0×10−9) within intron 7 of STX2. We further found evidence for the association of lead SNPs in STXBP5 and STX2 with expression levels of the respective transcripts. In in vitro cell studies, silencing STXBP5 decreased the release of tPA from vascular endothelial cells, whereas silencing STX2 increased the tPA release. Through an in silico lookup, we found no associations of the 3 lead SNPs with coronary artery disease or stroke. Conclusions—We identified 3 loci associated with circulating tPA levels, the PLAT region, STXBP5, and STX2. Our functional studies implicate a novel role for STXBP5 and STX2 in regulating tPA release.
Genomics | 2011
Raphaële Castagné; Tanja Zeller; Maxime Rotival; Silke Szymczak; Vinh Truong; Arne Schillert; David-Alexandre Trégouët; Thomas Münzel; Andreas Ziegler; François Cambien; Stefan Blankenberg; Laurence Tiret
In humans, the fraction of X-linked genes with higher expression in females has been estimated to be 5% from microarray studies, a proportion lower than the 25% of genes thought to escape X inactivation. We analyzed 715 X-linked transcripts in circulating monocytes from 1,467 subjects and found an excess of female-biased transcripts on the X compared to autosomes (9.4% vs 5.5%, p<2×10(-5)). Among the genes not previously known to escape inactivation, the most significant one was EFHC2 whose 20% of variability was explained by sex. We also investigated cis expression quantitative trait loci (eQTLs) by analyzing 15,703 X-linked SNPs. The frequency and magnitude of X-linked cis eQTLs were quite similar in males and females. Few genes exhibited a stronger genetic effect in females than in males (ARSD, DCX, POLA1 and ITM2A). These genes would deserve further investigation since they may contribute to sex pathophysiological differences.
PLOS ONE | 2014
Dylan Aïssi; Jessica Dennis; Martin Ladouceur; Vinh Truong; Nora Zwingerman; Ares Rocanin-Arjo; Marine Germain; Tara A. Paton; Pierre-Emmanuel Morange; David-Alexandre Trégouët
In order to investigate whether DNA methylation marks could contribute to the incomplete penetrance of the FV Leiden mutation, a major genetic risk factor for venous thrombosis (VT), we measured genome-wide DNA methylation levels in peripheral blood samples of 98 VT patients carrying the mutation and 251 VT patients without the mutation using the dedicated Illumina HumanMethylation450 array. The genome-wide analysis of 388,120 CpG probes identified three sites mapping to the SLC19A2 locus whose DNA methylation levels differed significantly (p<3 10−8) between carriers and non-carriers. The three sites replicated (p<2 10−7) in an independent sample of 214 individuals from five large families ascertained on VT and FV Leiden mutation among which 53 were carriers and 161 were non-carriers of the mutation. In both studies, these three CpG sites were also associated (2.33 10−11<p<3.02 10−4) with biomarkers of the Protein C pathway known to be influenced by the FV Leiden mutation. A comprehensive linkage disequilibrium (LD) analysis of the whole locus revealed that the original associations were due to LD between the FV Leiden mutation and a block of single nucleotide polymorphisms (SNP) located in SLC19A2. After adjusting for this block of SNPs, the FV Leiden mutation was no longer associated with any CpG site (p>0.05). In conclusion, our work clearly illustrates some promises and pitfalls of DNA methylation investigations on peripheral blood DNA in large epidemiological cohorts. DNA methylation levels at SLC19A2 are influenced by SNPs in LD with FV Leiden, but these DNA methylation marks do not explain the incomplete penetrance of the FV Leiden mutation.
Human Molecular Genetics | 2017
Bengt Sennblad; Saonli Basu; Johanna Mazur; Pierre Suchon; Angel Martinez-Perez; Astrid van Hylckama Vlieg; Vinh Truong; Yuhuang Li; Jesper R. Gådin; Weihong Tang; Vera Grossman; Hugoline G. de Haan; Niklas Handin; Angela Silveira; Juan Carlos Souto; Anders Franco-Cereceda; Pierre-Emmanuel Morange; José Manuel Soria; Per Eriksson; Anders Hamsten; Lars Maegdefessel; Frits R. Rosendaal; Philipp S. Wild; Aaron R. Folsom; David Tregouet; Maria Sabater-Lleal
&NA; Coagulation factor XI (FXI) has become increasingly interesting for its role in pathogenesis of thrombosis. While elevated plasma levels of FXI have been associated with venous thromboembolism and ischemic stroke, its deficiency is associated with mild bleeding. We aimed to determine novel genetic and post‐transcriptional plasma FXI regulators. We performed a genome‐wide association study (GWAS) for plasma FXI levels, using novel data imputed to the 1000 Genomes reference panel. Individual GWAS analyses, including a total of 16,169 European individuals from the ARIC, GHS, MARTHA and PROCARDIS studies, were meta‐analysed and further replicated in 2,045 individuals from the F5L family, GAIT2 and MEGA studies. Additional association with activated partial thromboplastin time (aPTT) was tested for the top SNPs. In addition, a study on the effect of miRNA on FXI regulation was performed using in silico prediction tools and in vitro luciferase assays. Three loci showed robust, replicating association with circulating FXI levels: KNG1 (rs710446, P‐value = 2.07 × 10‐302), F11 (rs4253417, P‐value = 2.86 × 10‐193), and a novel association in GCKR (rs780094, P‐value = 3.56 ×10‐09), here for the first time implicated in FXI regulation. The two first SNPs (rs710446 and rs4253417) also associated with aPTT. Conditional and haplotype analyses demonstrated a complex association signal, with additional novel SNPs modulating plasma FXI levels in both the F11 and KNG1 loci. Finally, eight miRNAs were predicted to bind F11 mRNA. Over‐expression of either miR‐145 or miR‐181 significantly reduced the luciferase activity in cells transfected with a plasmid containing FXI‐3’UTR. These results should open the door to new therapeutic targets for thrombosis prevention.
Scientific Reports | 2017
Vinh Truong; Siying Huang; Jessica Dennis; Mathieu Lemire; Nora Zwingerman; Dylan Aïssi; Irfahan Kassam; Claire Perret; Philip S. Wells; Pierre-Emmanuel Morange; Michael T. Wilson; David-Alexandre Trégouët
Efficient interventions to reduce blood triglycerides are few; newer and more tolerable intervention targets are needed. Understanding the molecular mechanisms underlying blood triglyceride levels variation is key to identifying new therapies. To explore the role of epigenetic mechanisms on triglyceride levels, a blood methylome scan was conducted in 199 individuals from 5 French-Canadian families ascertained on venous thromboembolism, and findings were replicated in 324 French unrelated patients with venous thromboembolism. Genetic context and functional relevance were investigated. Two DNA methylation sites associated with triglyceride levels were identified. The first one, located in the ABCG1 gene, was recently reported, whereas the second one, located in the promoter of the PHGDH gene, is novel. The PHGDH methylation site, cg14476101, was found to be associated with variation in triglyceride levels in a threshold manner: cg14476101 was inversely associated with triglyceride levels only when triglyceride levels were above 1.12 mmol/L (discovery P-value = 8.4 × 10−6; replication P-value = 0.0091). Public databases findings supported a functional role of cg14476101 on PHGDH expression. PHGDH catalyses the first step in the serine biosynthesis pathway. These findings highlight the role of epigenetic regulation of the PHGDH gene in triglyceride metabolism, providing novel insights on putative intervention targets.
Journal of Thrombosis and Haemostasis | 2016
Jessica Dennis; Vinh Truong; Dylan Aïssi; Alejandra Medina-Rivera; Stefan Blankenberg; Marine Germain; Mathieu Lemire; Lina Antounians; M. Civelek; Renate B. Schnabel; P. Wells; Michael D. Wilson; Pierre Morange; Da. Tregouet; F. Gagnon
Essentials Tissue factor pathway inhibitor (TFPI) regulates the blood coagulation cascade. We replicated previously reported linkage of TFPI plasma levels to the chromosome 2q region. The putative causal locus, rs62187992, was associated with TFPI plasma levels and thrombosis. rs62187992 was marginally associated with TFPI expression in human aortic endothelial cells.