Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vinicio de Jesus Perez is active.

Publication


Featured researches published by Vinicio de Jesus Perez.


Journal of Clinical Investigation | 2008

An antiproliferative BMP-2/PPARγ/apoE axis in human and murine SMCs and its role in pulmonary hypertension

Georg Hansmann; Vinicio de Jesus Perez; Tero-Pekka Alastalo; Cristina M. Alvira; Christophe Guignabert; Janine M. Bekker; Stefan Schellong; Takashi Urashima; Lingli Wang; Nicholas W. Morrell; Marlene Rabinovitch

Loss-of-function mutations in bone morphogenetic protein receptor II (BMP-RII) are linked to pulmonary arterial hypertension (PAH); the ligand for BMP-RII, BMP-2, is a negative regulator of SMC growth. Here, we report an interplay between PPARgamma and its transcriptional target apoE downstream of BMP-2 signaling. BMP-2/BMP-RII signaling prevented PDGF-BB-induced proliferation of human and murine pulmonary artery SMCs (PASMCs) by decreasing nuclear phospho-ERK and inducing DNA binding of PPARgamma that is independent of Smad1/5/8 phosphorylation. Both BMP-2 and a PPARgamma agonist stimulated production and secretion of apoE by SMCs. Using a variety of methods, including short hairpin RNAi in human PASMCs, PAH patient-derived BMP-RII mutant PASMCs, a PPARgamma antagonist, and PASMCs isolated from PPARgamma- and apoE-deficient mice, we demonstrated that the antiproliferative effect of BMP-2 was BMP-RII, PPARgamma, and apoE dependent. Furthermore, we created mice with targeted deletion of PPARgamma in SMCs and showed that they spontaneously developed PAH, as indicated by elevated RV systolic pressure, RV hypertrophy, and increased muscularization of the distal pulmonary arteries. Thus, PPARgamma-mediated events could protect against PAH, and PPARgamma agonists may reverse PAH in patients with or without BMP-RII dysfunction.


Journal of Clinical Investigation | 2013

FK506 activates BMPR2, rescues endothelial dysfunction, and reverses pulmonary hypertension

Edda Spiekerkoetter; Xuefei Tian; Jie Cai; Rachel K. Hopper; Deepti Sudheendra; Caiyun G. Li; Nesrine El-Bizri; Hirofumi Sawada; Roxanna Haghighat; Roshelle Chan; Leila Haghighat; Vinicio de Jesus Perez; Lingli Wang; Sushma Reddy; Mingming Zhao; Daniel Bernstein; David E. Solow-Cordero; Philip A. Beachy; Thomas J. Wandless; Peter ten Dijke; Marlene Rabinovitch

Dysfunctional bone morphogenetic protein receptor-2 (BMPR2) signaling is implicated in the pathogenesis of pulmonary arterial hypertension (PAH). We used a transcriptional high-throughput luciferase reporter assay to screen 3,756 FDA-approved drugs and bioactive compounds for induction of BMPR2 signaling. The best response was achieved with FK506 (tacrolimus), via a dual mechanism of action as a calcineurin inhibitor that also binds FK-binding protein-12 (FKBP12), a repressor of BMP signaling. FK506 released FKBP12 from type I receptors activin receptor-like kinase 1 (ALK1), ALK2, and ALK3 and activated downstream SMAD1/5 and MAPK signaling and ID1 gene regulation in a manner superior to the calcineurin inhibitor cyclosporine and the FKBP12 ligand rapamycin. In pulmonary artery endothelial cells (ECs) from patients with idiopathic PAH, low-dose FK506 reversed dysfunctional BMPR2 signaling. In mice with conditional Bmpr2 deletion in ECs, low-dose FK506 prevented exaggerated chronic hypoxic PAH associated with induction of EC targets of BMP signaling, such as apelin. Low-dose FK506 also reversed severe PAH in rats with medial hypertrophy following monocrotaline and in rats with neointima formation following VEGF receptor blockade and chronic hypoxia. Our studies indicate that low-dose FK506 could be useful in the treatment of PAH.


Journal of Cell Biology | 2009

Bone morphogenetic protein 2 induces pulmonary angiogenesis via Wnt–β-catenin and Wnt–RhoA–Rac1 pathways

Vinicio de Jesus Perez; Tero-Pekka Alastalo; Jenny Wu; Jeffrey D. Axelrod; John P. Cooke; Manuel R. Amieva; Marlene Rabinovitch

Mutations in bone morphogenetic protein (BMP) receptor II (BMPRII) are associated with pulmonary artery endothelial cell (PAEC) apoptosis and the loss of small vessels seen in idiopathic pulmonary arterial hypertension. Given the low penetrance of BMPRII mutations, abnormalities in other converging signaling pathways may be necessary for disease development. We hypothesized that BMPRII supports normal PAEC function by recruiting Wingless (Wnt) signaling pathways to promote proliferation, survival, and motility. In this study, we report that BMP-2, via BMPRII-mediated inhibition of GSK3-β, induces β-catenin (β-C) accumulation and transcriptional activity necessary for PAEC survival and proliferation. At the same time, BMP-2 mediates phosphorylated Smad1 (pSmad1) or, with loss of BMPRII, pSmad3-dependent recruitment of Disheveled (Dvl) to promote RhoA–Rac1 signaling necessary for motility. Finally, using an angiogenesis assay in severe combined immunodeficient mice, we demonstrate that both β-C– and Dvl-mediated RhoA–Rac1 activation are necessary for vascular growth in vivo. These findings suggest that the recruitment of both canonical and noncanonical Wnt pathways is required in BMP-2–mediated angiogenesis.


Journal of Clinical Investigation | 2011

Disruption of PPARγ/β-catenin–mediated regulation of apelin impairs BMP-induced mouse and human pulmonary arterial EC survival

Tero-Pekka Alastalo; Molong Li; Vinicio de Jesus Perez; David Pham; Hirofumi Sawada; Jordon K. Wang; Minna Koskenvuo; Lingli Wang; Bruce A. Freeman; Howard Y. Chang; Marlene Rabinovitch

Reduced bone morphogenetic protein receptor 2 (BMPR2) expression in patients with pulmonary arterial hypertension (PAH) can impair pulmonary arterial EC (PAEC) function. This can adversely affect EC survival and promote SMC proliferation. We hypothesized that interventions to normalize expression of genes that are targets of BMPR2 signaling could restore PAEC function and prevent or reverse PAH. Here we have characterized, in human PAECs, a BMPR2-mediated transcriptional complex between PPARγ and β-catenin and shown that disruption of this complex impaired BMP-mediated PAEC survival. Using whole genome-wide ChIP-Chip promoter analysis and gene expression microarrays, we delineated PPARγ/β-catenin-dependent transcription of target genes including APLN, which encodes apelin. We documented reduced PAEC expression of apelin in PAH patients versus controls. In cell culture experiments, we showed that apelin-deficient PAECs were prone to apoptosis and promoted pulmonary arterial SMC (PASMC) proliferation. Conversely, we established that apelin, like BMPR2 ligands, suppressed proliferation and induced apoptosis of PASMCs. Consistent with these functions, administration of apelin reversed PAH in mice with reduced production of apelin resulting from deletion of PPARγ in ECs. Taken together, our findings suggest that apelin could be effective in treating PAH by rescuing BMPR2 and PAEC dysfunction.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2011

Disruption of the Apelin-APJ System Worsens Hypoxia-Induced Pulmonary Hypertension

Suparna M. Chandra; Hedi Razavi; Jongmin Kim; Rani Agrawal; Ramendra K. Kundu; Vinicio de Jesus Perez; Roham T. Zamanian; Thomas Quertermous; Hyung J. Chun

Objective—The G-protein–coupled receptor APJ and its ligand apelin are highly expressed in the pulmonary vasculature, but their function in this vascular bed is unclear. We hypothesized that disruption of apelin signaling would lead to worsening of the vascular remodeling associated with pulmonary hypertension (PH). Methods and Results—We found that apelin-null mice developed more severe PH compared with wild-type mice when exposed to chronic hypoxia. Micro-computed tomography of the pulmonary arteries demonstrated significant pruning of the microvasculature in the apelin-null mice. Apelin-null mice had a significant reduction of serum nitrate levels. This was secondary to downregulation of endothelial nitric oxide synthase (eNOS), which was associated with reduced expression of Kruppel-like factor 2 (KLF2), a known regulator of eNOS expression. In vitro knockdown studies targeting apelin in human pulmonary artery endothelial cells demonstrated decreased eNOS and KLF2 expression, as well as impaired phosphorylation of AMP-activated kinase and eNOS. Moreover, serum apelin levels of patients with PH were significantly lower than those of controls. Conclusion—These data demonstrate that disruption of apelin signaling can exacerbate PH mediated by decreased activation of AMP-activated kinase and eNOS, and they identify this pathway as a potentially important therapeutic target for treatment of this refractory human disease.


Circulation-heart Failure | 2011

Characteristics and Outcome After Hospitalization for Acute Right Heart Failure in Patients With Pulmonary Arterial Hypertension

Francois Haddad; Tyler Peterson; Eric Fuh; Kristina Kudelko; Vinicio de Jesus Perez; Mehdi Skhiri; Randall H. Vagelos; Ingela Schnittger; André Y. Denault; David N. Rosenthal; Ramona L. Doyle; Roham T. Zamanian

Background— Although much is known about the risk factors for poor outcome in patients hospitalized with acute heart failure and left ventricular dysfunction, much less is known about the syndrome of acute heart failure primarily affecting the right ventricle (acute right heart failure). Methods and Results— By using Stanford Hospitals pulmonary hypertension database, we identified consecutive acute right heart failure hospitalizations in patients with PAH. We used longitudinal regression analysis with the generalized estimating equations method to identify factors associated with an increased likelihood of 90-day mortality or urgent transplantation. From June 1999 to September 2009, 119 patients with PAH were hospitalized for acute right heart failure (207 episodes). Death or urgent transplantation occurred in 34 patients by 90 days of admission. Multivariable analysis identified a higher respiratory rate on admission (>20 breaths per minute; OR, 3.4; 95% CI, 1.5–7.8), renal dysfunction on admission (glomerular filtration rate <45 mL/min per 1.73 m2; OR, 2.7; 95% CI, 1.2–6.3), hyponatremia (serum sodium ⩽136 mEq/L; OR, 3.6; 95% CI, 1.7–7.9), and tricuspid regurgitation severity (OR, 2.5 per grade; 95% CI, 1.2–5.5) as independent factors associated with an increased likelihood of death or urgent transplantation. Conclusions— These results highlight the high mortality after hospitalizations for acute right heart failure in patients with PAH. Factors identifiable within hours of hospitalization may help predict the likelihood of death or the need for urgent transplantation in patients with PAH.


Progress in Cardiovascular Diseases | 2011

Pulmonary Hypertension Associated With Left Heart Disease: Characteristics, Emerging Concepts, and Treatment Strategies

Francois Haddad; Kristina Kudelko; Olaf Mercier; Bojan Vrtovec; Roham T. Zamanian; Vinicio de Jesus Perez

Left heart disease (LHD) represents the most common causes of pulmonary hypertension (PH). Whether caused by systolic or diastolic dysfunction or valvular heart disease, a hallmark of PH associated with LHD is elevated left atrial pressure. In all cases, the increase in left atrial pressure causes a passive increase in pulmonary pressure. In some patients, a superimposed active component caused by pulmonary arterial vasoconstriction and vascular remodeling may lead to a further increase in pulmonary arterial pressure. When present, PH is associated with a worse prognosis in patients with LHD. In addition to local abnormalities in nitric oxide and endothelin production, gene modifiers such as serotonin polymorphisms may be associated with the pathogenesis of PH in LHD. Optimizing heart failure regimens and corrective valve surgery represent the cornerstone of the treatment of PH in LHD. Recent studies suggest that sildenafil, a phosphodiesterase-5 inhibitor, is a promising agent in the treatment of PH in LHD. Unloading the left ventricle with circulatory support may also reverse severe PH in patients with end-stage heart failure allowing candidacy to heart transplantation.


Circulation Research | 2009

S100A4 and Bone Morphogenetic Protein-2 Codependently Induce Vascular Smooth Muscle Cell Migration via Phospho–Extracellular Signal-Regulated Kinase and Chloride Intracellular Channel 4

Edda Spiekerkoetter; Christophe Guignabert; Vinicio de Jesus Perez; Tero-Pekka Alastalo; Janine M. Powers; Lingli Wang; Allan Lawrie; Noona Ambartsumian; Ann Marie Schmidt; Mark Berryman; Richard H. Ashley; Marlene Rabinovitch

Rationale: S100A4/Mts1 is implicated in motility of human pulmonary artery smooth muscle cells (hPASMCs), through an interaction with the RAGE (receptor for advanced glycation end products). Objective: We hypothesized that S100A4/Mts1-mediated hPASMC motility might be enhanced by loss of function of bone morphogenetic protein (BMP) receptor (BMPR)II, observed in pulmonary arterial hypertension. Methods and Results: Both S100A4/Mts1 (500 ng/mL) and BMP-2 (10 ng/mL) induce migration of hPASMCs in a novel codependent manner, in that the response to either ligand is lost with anti-RAGE or BMPRII short interference (si)RNA. Phosphorylation of extracellular signal-regulated kinase is induced by both ligands and is required for motility by inducing matrix metalloproteinase 2 activity, but phospho–extracellular signal-regulated kinase 1/2 is blocked by anti-RAGE and not by BMPRII short interference RNA. In contrast, BMPRII short interference RNA, but not anti-RAGE, reduces expression of intracellular chloride channel (CLIC)4, a scaffolding molecule necessary for motility in response to S100A4/Mts1 or BMP-2. Reduced CLIC4 expression does not interfere with S100A4/Mts1 internalization or its interaction with myosin heavy chain IIA, but does alter alignment of myosin heavy chain IIA and actin filaments creating the appearance of vacuoles. This abnormality is associated with reduced peripheral distribution and/or delayed activation of RhoA and Rac1, small GTPases required for retraction and extension of lamellipodia in motile cells. Conclusions: Our studies demonstrate how a single ligand (BMP-2 or S100A4/Mts1) can recruit multiple cell surface receptors to relay signals that coordinate events culminating in a functional response, ie, cell motility. We speculate that this carefully controlled process limits signals from multiple ligands, but could be subverted in disease.


Journal of Experimental Medicine | 2014

Reduced BMPR2 expression induces GM-CSF translation and macrophage recruitment in humans and mice to exacerbate pulmonary hypertension

Hirofumi Sawada; Toshie Saito; Nils Nickel; Tero-Pekka Alastalo; Jason P. Glotzbach; Roshelle Chan; Leila Haghighat; Gabriele Fuchs; Michael Januszyk; Aiqin Cao; Ying-Ju Lai; Vinicio de Jesus Perez; Yu-Mee Kim; Lingli Wang; Pin-I Chen; Edda Spiekerkoetter; Yoshihide Mitani; Geoffrey C. Gurtner; Peter Sarnow; Marlene Rabinovitch

Reduced expression of bone morphogenetic protein receptor 2 subverts a stress granule response, heightens GM-CSF mRNA translation, and increases inflammatory cell recruitment to exacerbate pulmonary arterial hypertension.


Journal of Cell Biology | 2011

BMP promotes motility and represses growth of smooth muscle cells by activation of tandem Wnt pathways

Vinicio de Jesus Perez; Ziad Ali; Tero-Pekka Alastalo; Fumiaki Ikeno; Hirofumi Sawada; Ying Ju Lai; Thomas Kleisli; Edda Spiekerkoetter; Xiumei Qu; Laura H. Rubinos; Euan A. Ashley; Manuel R. Amieva; Shoukat Dedhar; Marlene Rabinovitch

Vascular smooth muscle cell motility relies on interdependent activation of canonical and noncanonical Wnt signal transduction pathways; fibronectin, produced in response to BMP-2–mediated activation of β-catenin, promotes motility by activating an integrin-linked kinase via α4-integrin.

Collaboration


Dive into the Vinicio de Jesus Perez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tero-Pekka Alastalo

Helsinki University Central Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge