Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vinicio Manzi is active.

Publication


Featured researches published by Vinicio Manzi.


Geological Society of America Bulletin | 2003

Sedimentary and tectonic evolution of the Vena del Gesso basin (Northern Apennines, Italy): Implications for the onset of the Messinian salinity crisis

Marco Roveri; Vinicio Manzi; Franco Ricci Lucchi; Sergio Rogledi

The integration of field and subsurface data permits a substantial revision of the sedimentary evolution of the Vena del Gesso basin, a thrust-top basin in the Northern Apennines where shallow-water primary gypsum deposits related to the Messinian salinity crisis were well developed and preserved. As inferred from lateral and vertical facies changes within the underlying deep-marine turbidites of the Marnoso-arenacea Formation, evaporite precipitation occurred in a basin bounded to the north and to the east by a thrust-related anticline actively growing since the late Tortonian. Both gypsum deposition and subsequent deformation were strongly controlled by evolving paleobathymetry driven by tectonics. Primary gypsum precipitated in a shallow, silled basin, while in the adjacent deeper and larger foredeep basin, organic-rich shales were deposited. Gypsum deposits underwent severe postdepositional deformation related to large-scale gravitational collapse, as a result of a regional uplift event, also coincident with the end of the evaporitic phase. Along the inner, shallower-dipping limb of the anticline bounding the basin, large-scale, poorly deformed gypsum slabs moved downslope along a detachment surface developed at the contact with the underlying euxinic shales, forming both extensional and compressional features and showing an overall southwestern vergence. The identification of a south-southwest–dipping paleoslope, here pointed out for the first time, suggests that the deformational features affecting the gypsum unit were probably driven by gravity and not by active thrusting, as thought up to now. The steeper frontal limb of the anticline promoted the transformation of gypsum slides into debris flows and turbidite currents that deposited their load in the adjacent deeper basin. This gravitational deformation was sealed by postevaporitic upper Messinian Lagomare deposits. The sedimentary history of the Vena del Gesso basin suggests that the Messinian salinity crisis in the Apennine foredeep, as well as in the Balearic, Tyrrhenian, Sicily, and Eastern Mediterranean Basins, was tightly linked to tectonic processes. The large-scale, postdepositional collapse of primary evaporitic deposits is a widespread feature in the Mediterranean basins, and it may have altered the original stratigraphic relationships in some places. This finding has potentially important implications for a correct paleoenvironmental reconstruction of the onset of the Messinian salinity crisis.


Geobiology | 2010

Ribosomal RNA gene fragments from fossilized cyanobacteria identified in primary gypsum from the late Miocene, Italy

Giuliana Panieri; Stefano Lugli; Vinicio Manzi; Marco Roveri; B. C. Schreiber; Katarzyna A. Palinska

Earth scientists have searched for signs of microscopic life in ancient samples of permafrost, ice, deep-sea sediments, amber, salt and chert. Until now, evidence of cyanobacteria has not been reported in any studies of ancient DNA older than a few thousand years. Here, we investigate morphologically, biochemically and genetically primary evaporites deposited in situ during the late Miocene (Messinian) Salinity Crisis from the north-eastern Apennines of Italy. The evaporites contain fossilized bacterial structures having identical morphological forms as modern microbes. We successfully extracted and amplified genetic material belonging to ancient cyanobacteria from gypsum crystals dating back to 5.910-5.816 Ma, when the Mediterranean became a giant hypersaline brine pool. This finding represents the oldest ancient cyanobacterial DNA to date. Our clone library and its phylogenetic comparison with present cyanobacterial populations point to a marine origin for the depositional basin. This investigation opens the possibility of including fossil cyanobacterial DNA into the palaeo-reconstruction of various environments and could also be used to quantify the ecological importance of cyanobacteria through geological time. These genetic markers serve as biosignatures providing important clues about ancient life and begin a new discussion concerning the debate on the origin of late Miocene evaporites in the Mediterranean.


American Journal of Science | 2014

Dense shelf water cascading and Messinian Canyons: A new scenario for the Mediterranean salinity crisis

Marco Roveri; Vinicio Manzi; A. Bergamasco; F. M. Falcieri; Rocco Gennari; Stefano Lugli; B. C. Schreiber

The salt giant beneath the deep Mediterranean seafloor is the impressive record of the “Messinian salinity crisis,” a dramatic event that occurred about 6 Ma ago following the reduction of the connections with the Atlantic Ocean. According to the shallow-water deep-basin model, developed for these deposits (Hsü and others, 1973a, 1973b, 1978a, 1978b), the Messinian evaporites formed in a deep but desiccated Mediterranean, while shelves and slopes underwent subaerial erosion due to fluvial rejuvenation triggered by a 1500 m sea level drawdown. Deeply incised Messinian canyons in the continental slopes surrounding the Mediterranean are the main argument supporting this scenario. Using a state of the art model and idealized but realistic numerical simulations, here we demonstrate that the activation of downslope flows of hypersaline, dense waters, in a process similar to present-day “dense shelf water cascading,” but much more energetic, may account for both slope erosion and progressive salinity rise leading to the formation of deep-seated supersaturated brines. Our findings support a deep-water deep-basin model (Schmalz, 1969, 1991; De Benedetti, 1976, 1982; Dietz and Woodhouse, 1988), thus implying that evaporite deposition may have occurred in a non-desiccated basin with strongly reduced ocean connections.


Journal of Sedimentary Research | 2012

High-Frequency Cyclicity in the Mediterranean Messinian Evaporites: Evidence for Solar–Lunar Climate Forcing

Vinicio Manzi; Rocco Gennari; Stefano Lugli; Marco Roveri; Nicola Scafetta; B. Charlotte Schreiber

Abstract The deposition of varved sedimentary sequences is usually controlled by climate conditions. The study of two late Miocene evaporite successions (one halite and the other gypsum) consisting of annual varves has been carried out to reconstruct the paleoclimatic and paleoenvironmental conditions existing during the acme of the Messinian salinity crisis, ~ 6 Ma, when thick evaporite deposits accumulated on the floor of the Mediterranean basin. Spectral analyses of these varved evaporitic successions reveal significant periodicity peaks at around 3–5, 9, 11–13, 20–27 and 50–100 yr. A comparison with modern precipitation data in the western Mediterranean shows that during the acme of the Messinian salinity crisis the climate was not in a permanent evaporitic stage, but in a dynamic situation where evaporite deposition was controlled by quasi-periodic climate oscillations with similarity to modern analogs including Quasi-Biennial Oscillation, El Nino Southern Oscillation, and decadal to secular lunar- and solar-induced cycles. Particularly we found a significant quasi-decadal oscillation with a prominent 9-year peak that is commonly also found in modern temperature records and is present in the contemporary Atlantic Multidecadal Oscillation (AMO) index and Pacific Decadal Oscillation (PDO) index. These cyclicities are common to both ancient and modern climate records because they can be associated with solar and solar-lunar tidal cycles. During the Messinian the Mediterranean basin as well as the global ocean were characterized by different configurations than at present, in terms of continent distribution, ocean size, geography, hydrological connections, and ice-sheet volumes. The recognition of modern-style climate oscillations during the Messinian suggests that, although local geographic factors acted as pre-conditioning factors turning the Mediterranean Sea into a giant brine pool, external climate forcings, regulated by solar–lunar cycles and largely independent from local geographic factors, modulated the deposition of the evaporites.


Geology | 2014

Did Late Miocene (Messinian) gypsum precipitate from evaporated marine brines? Insights from the Piedmont Basin (Italy)

M. Natalicchio; Francesco Dela Pierre; Stefano Lugli; Tim K. Lowenstein; Sarah J. Feiner; Simona Ferrando; Vinicio Manzi; Marco Roveri; P. Clari

During the first stage of the Late Miocene Messinian salinity crisis (5.97–5.60 Ma), deposition of sulfates (the Primary Lower Gypsum) occurred in shallow silled peripheral subbasins of the Mediterranean undergoing restricted water exchange with the Atlantic Ocean. Fluid inclusions in Messinian selenite crystals from the Piedmont Basin (northwest Italy) have surprisingly low salinities (average of 1.6 wt% NaCl equivalent), suggesting that parent waters were depleted in Na + and Cl – compared to modern seawater. Modern gypsum from a Mediterranean salt work, in contrast, contains fluid inclusions with elevated salinities that match the normal evaporation trend expected for seawater. The salinity data indicate that the Messinian sulfate deposits from the Piedmont Basin formed from hybrid parent waters: seawater mixed with Ca 2+ and SO 4 2– enriched freshwaters that dissolved coeval marginal marine gypsum. Such mixed parent waters and complex recycling processes should be taken into account when explaining the genesis of other Messinian gypsum deposits across the Mediterranean Basin.


Geological Society, London, Special Publications | 2007

The Messinian ‘Vena del Gesso’ evaporites revisited: characterization of isotopic composition and organic matter

Stefano Lugli; M. A. Bassetti; Vinicio Manzi; Mario Barbieri; Antonio Longinelli; Marco Roveri

Abstract The ‘Vena del Gesso’ (Gessoso-Solfifera Fm, Messinian) is a 227 m-thick ridge along the western Romagna Apennines (Italy) consisting of up to 16 selenite cycles separated by shales and minor carbonate. The total organic carbon values of these deposits range between 0.087–0.016% (gypsum) and 3% (shales). Organic matter is dominated by black debris associated with continental debris. Algae and dynocysts are rare (<1%). The amount of amorphous organic matter is low but it may reach up to c. 40%. The 87Sr/86Sr of gypsum and carbonate vary from 0.708890 to 0.709024, yielding non-oceanic values with several exceptions that plot within error of coeval oceanic values only in the upper part of the section (from the 6° bed). The sulphur isotope composition of gypsum range between δ34S =+21.8 and +23.7‰ and may represent precipitation of δ34S-enriched gypsum due to the fractionation effect or recycling of coeval gypsum with contributions of brine-sediment redox variations. The isotope values of carbonates show a large variability (−6.4<δ18O<+6.05‰; −14.68<δ13C<+2.5‰), suggesting a complex origin by mixing of marine and non-marine waters with a significant contribution of reduced organic matter. These data point to an evaporite basin dominated by continental waters which received significant phases of marine recharge in the upper part together with a marked facies change. Because seawater recharges and a similar facies change are present in other Messinian sections, it follows that we have new possible geochemical and facies markers to correlate the Lower Evaporites across the Mediterranean.


Petroleum Geoscience | 2016

The Messinian salinity crisis: open problems and possible implications for Mediterranean petroleum systems

Marco Roveri; Rocco Gennari; Stefano Lugli; Vinicio Manzi; Nicola Minelli; Matteo Reghizzi; Angelo Riva; Massimo Rossi; B. Charlotte Schreiber

A general agreement on what actually happened during the Messinian salinity crisis (MSC) has been reached in the minds of most geologists but, in the deepest settings of the Mediterranean Basin, the picture is still far from being finalized and several different scenarios for the crisis have been proposed, with different significant implications for hydrocarbon exploration. The currently accepted MSC paradigm of the ‘shallow-water deep-basin’ model, which implies high-amplitude sea-level oscillations (> 1500 m) of the Mediterranean up to its desiccation, is usually considered as fact. As a consequence, it is on this model that the implications of the MSC events on the Mediterranean petroleum systems are commonly based. In fact, an alternative, deep-water, non-desiccated scenario of the MSC is possible: it (i) implies the permanence of a large water body in the Mediterranean throughout the entire Messinian salinity crisis, but with strongly reduced Atlantic connections; and (ii) envisages a genetic link between Messinian erosion of the Mediterranean margins and deep brine development. In this work, we focus on the strong implications of an assessment of the petroleum systems of the Mediterranean and adjoining areas (e.g. the Black Sea Basin) that can be based on such a non-desiccated MSC scenario. In particular, the near-full basin model delivers a more realistic definition of Messinian source-rock generation and distribution, as well as of the magnitude of water-unloading processes and their effects on hydrocarbon accumulation.


Geochemistry Geophysics Geosystems | 2014

Precessional control of Sr ratios in marginal basins during the Messinian Salinity Crisis

R. P. M. Topper; Stefano Lugli; Vinicio Manzi; Marco Roveri; P. Th. Meijer

Based on 87Sr/86Sr data of the Primary Lower Gypsum (PLG) deposits in the Vena del Gesso basin—a marginal basin of the Mediterranean during the Messinian Salinity Crisis—a correlation between 87Sr/86Sr values and precessional forcing has recently been proposed but not yet confirmed. In this study, a box model is set up to represent the Miocene Mediterranean deep basin and a connected marginal basin. Measurements of 87Sr/86Sr in the Vena del Gesso and estimated salinity extrema are used to constrain model results. In an extensive analysis with this model, we assess whether coeval 87Sr/86Sr and salinity fluctuations could have been forced by precession-driven changes in the fresh water budget. A comprehensive set of the controlling parameters is examined to assess the conditions under which precession-driven 87Sr/86Sr variations occur and to determine the most likely setting for PLG formation. Model results show that precession-driven 87Sr/86Sr and salinity fluctuations in marginal basins are produced in settings within a large range of marginal basin sizes, riverine strontium characteristics, amplitudes of precessional fresh water budget variation, and average fresh water budgets of both the marginal and deep basin. PLG deposition most likely occurred when the Atlantic-Mediterranean connection was restricted, and the average fresh water budget in the Mediterranean was significantly less negative than at present day. Considering the large range of settings in which salinities and 87Sr/86Sr fluctuate on a precessional timescale, 87Sr/86Sr variations are expected to be a common feature in PLG deposits in marginal basins of the Mediterranean.


Archive | 2007

Tectonic and Climatic Controls on Sedimentation in Late Miocene Cortemaggiore Wedge-Top Basin (Northwestern Apennines, Italy)

Andrea Artoni; F. Rizzini; Marco Roveri; Rocco Gennari; Vinicio Manzi; Giovanni Papani; Massimo Bernini

At the foothills of the north-western Apennines, the Cortemaggiore Wedge-Top Basin (CWTB) is bounded by the buried and arcuate Cortemaggiore anticline, to the north, and by the polyphased and complex Salsomaggiore tectonic window, to the south. The CWTB started to form in response to a late Tortonian tectonic pulse that uplifted the Cortemaggiore anticline and established euxinic conditions. A major intra-Messinian tectonic pulse further shortened the CWTB and triggered the emplacement of gravity-driven mass-wasting deposits above which turbiditic, shelfal deposits evolve upward to fluvio-deltaic deposits. The former, Late Messinian hypohaline succession, is characterized by a well-developed cyclical pattern which falls in the range of astronomically-controlled climate changes with precessional periodicity modulated by obliquity and eccentricity periodicity. Tectonic and climate controls on sedimentary succession of the CWTB act at different frequencies. Based on the refined and highresolution late Miocene chronostratigraphy of coeval Mediterranean sedimentary succession, it is possible to time constrain the tectonic and climatic events and their cyclicity. Tectonics control acts at low frequency (order of 2 Myr) and produces major and fast morphologic changes of the basin. Climate acts at variable higher frequency (order of 20–100 kyr); it both distributes laterally and stacks vertically and cyclically the sediment supplied to transport by erosion of tectonically uplifted rocks. The tectonic and climatic controls should have acted concomitantly over the entire Northern Apennines foreland basin system and the Mediterranean area, because cyclicity and depositional characters of late Miocene succession present common features. Tectonic uplift causes basin-wide hydrologic and hydrogeologic changes that might induce increased evaporation; in the CWTB, two drier climate events, corresponding to the lower and upper evaporites of the Mediterranean region, are closely preceded by tectonic pulses. However, during late Miocene, climate changes occurred also outside the Mediterranean region. Thus, it is argued that the 2 Myr is a periodicity common both to tectonics pulses and climate changes; it is a low-frequency cyclicity that, related to astronomical forces, drives simultaneous action of tectonic pulses and climate changes within the CWTB.


Paleoceanography | 2016

Miocene to Pleistocene osmium isotopic records of the Mediterranean sediments

Junichiro Kuroda; Francisco J Jiménez-Espejo; Tatsuo Nozaki; Rocco Gennari; Stefano Lugli; Vinicio Manzi; Marco Roveri; Rachel Flecker; Francisco Javier Sierro; Toshihiro Yoshimura; Katsuhiko Suzuki; Naohiko Ohkouchi

In the late Miocene the Mediterranean Sea experienced a salinity crisis and thick sequences of evaporites precipitated across the deep and marginal basins. In this study we report Os isotopic records from Deep Sea Drilling Project and Ocean Drilling Project cores in the Mediterranean: the Balearic Sea (Site 372), the Tyrrhenian Sea (Site 654), the Ionian Basin (Site 374), and the Florence Rise (Sites 375–376), as well as Integrated Ocean Drilling Project Site U1387 in Gulf of Cadiz, North Atlantic. Pliocene-Pleistocene sediments at all sites show 187Os/188Os values close to that of the coeval ocean water, indicating that the Mediterranean was connected to the North Atlantic. Evaporitic sediments deposited during the latest Miocene, however, have 187Os/188Os values significantly lower than coeval ocean water values. The offset of the Mediterranean evaporite 187Os/188Os is attributed to limited exchange with the North Atlantic during the Messinian salinity crisis. The source of unradiogenic Os is likely to be weathering of ultramafic rocks (ophiolites) cropping out in the Mediterraneans drainage basins. Based on a box model we estimated the amount of unradiogenic Os and the Atlantic-Mediterranean exchange rate to explain this offset. Os isotopic ratios of the pre-evaporite sediments in the western Mediterranean are almost identical to that of the coeval ocean water. In contrast, equivalent sediments from the Florence Rise have significantly lower 187Os/188Os values. The offset in the Os isotopic ratio on the Florence Rise is attributed either to limited water exchange between eastern and western Mediterranean or to local effects associated with exhumation of the Troodos ophiolites (Cyprus).

Collaboration


Dive into the Vinicio Manzi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefano Lugli

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marco Taviani

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Junichiro Kuroda

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge