Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vinicius Carreira is active.

Publication


Featured researches published by Vinicius Carreira.


American Journal of Physiology-heart and Circulatory Physiology | 2014

Novel role of transient receptor potential vanilloid 2 in the regulation of cardiac performance

Jack Rubinstein; Valerie M. Lasko; Sheryl E. Koch; Vivek P. Singh; Vinicius Carreira; Nathan Robbins; Amit R. Patel; Min Jiang; Philip Bidwell; Evangelia G. Kranias; W. Keith Jones; John N. Lorenz

Transient receptor potential cation channels have been implicated in the regulation of cardiovascular function, but only recently has our laboratory described the vanilloid-2 subtype (TRPV2) in the cardiomyocyte, though its exact mechanism of action has not yet been established. This study tests the hypothesis that TRPV2 plays an important role in regulating myocyte contractility under physiological conditions. Therefore, we measured cardiac and vascular function in wild-type and TRPV2(-/-) mice in vitro and in vivo and found that TRPV2 deletion resulted in a decrease in basal systolic and diastolic function without affecting loading conditions or vascular tone. TRPV2 stimulation with probenecid, a relatively selective TRPV2 agonist, caused an increase in both inotropy and lusitropy in wild-type mice that was blunted in TRPV2(-/-) mice. We examined the mechanism of TRPV2 inotropy/lusitropy in isolated myocytes and found that it modulates Ca(2+) transients and sarcoplasmic reticulum Ca(2+) loading. We show that the activity of this channel is necessary for normal cardiac function and that there is increased contractility in response to agonism of TRPV2 with probenecid.


Environmental Health Perspectives | 2013

Disruption of aryl hydrocarbon receptor homeostatic levels during embryonic stem cell differentiation alters expression of homeobox transcription factors that control cardiomyogenesis.

Qin Wang; Jing Chen; Chia-I Ko; Yunxia Fan; Vinicius Carreira; Yinglei Chen; Ying Xia; Mario Medvedovic; Alvaro Puga

Background: The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that regulates the expression of xenobiotic detoxification genes and is a critical mediator of gene–environment interactions. Many AHR target genes identified by genome-wide gene expression profiling have morphogenetic functions, suggesting that AHR may play a role in embryonic development. Objectives: To characterize the developmental functions of the AHR, we studied the consequences of AHR activation by the agonist 2,3,7,8-tetrachlorodibenzo-p-doxin (TCDD), and the result of its repression by the antagonists 6,2,4-trimethoxyflavone and CH 223191 or by short-hairpin RNA (shRNA)-mediated Ahr knockdown during spontaneous differentiation of embryonic stem (ES) cells into cardiomyocytes. Methods: We generated an AHR-positive cardiomyocyte lineage differentiated from mouse ES cells that expresses puromycin resistance and enhanced green fluorescent protein (eGFP) under the control of the Cyp1a1 (cytochrome P450 1a1) promoter. We used RNA sequencing (RNA.Seq) to analyze temporal trajectories of TCDD-dependent global gene expression in these cells during differentiation. Results: Activation, inhibition, and knockdown of Ahr significantly inhibited the formation of contractile cardiomyocyte nodes. Global expression analysis of AHR-positive cells showed that activation of the AHR/TCDD axis disrupted the concerted expression of genes that regulate multiple signaling pathways involved in cardiac and neural morphogenesis and differentiation, including dozens of genes encoding homeobox transcription factors and Polycomb and trithorax group proteins. Conclusions: Disruption of AHR expression levels resulted in gene expression changes that perturbed cardiomyocyte differentiation. The main function of the AHR during development appears to be the coordination of a complex regulatory network responsible for attainment and maintenance of cardiovascular homeostasis. Citation: Wang Q, Chen J, Ko CI, Fan Y, Carreira V, Chen Y, Xia Y, Medvedovic M, Puga A. 2013. Disruption of aryl hydrocarbon receptor homeostatic levels during embryonic stem cell differentiation alters expression of homeobox transcription factors that control cardiomyogenesis. Environ Health Perspect 121:1334–1343; http://dx.doi.org/10.1289/ehp.1307297


PLOS ONE | 2015

Disruption of Ah Receptor Signaling during Mouse Development Leads to Abnormal Cardiac Structure and Function in the Adult

Vinicius Carreira; Yunxia Fan; Hisaka Kurita; Qin Wang; Chia-I Ko; Mindi Naticchioni; Min Jiang; Sheryl E. Koch; Xiang Zhang; Jacek Biesiada; Mario Medvedovic; Ying Xia; Jack Rubinstein; Alvaro Puga

The Developmental Origins of Health and Disease (DOHaD) Theory proposes that the environment encountered during fetal life and infancy permanently shapes tissue physiology and homeostasis such that damage resulting from maternal stress, poor nutrition or exposure to environmental agents may be at the heart of adult onset disease. Interference with endogenous developmental functions of the aryl hydrocarbon receptor (AHR), either by gene ablation or by exposure in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent AHR ligand, causes structural, molecular and functional cardiac abnormalities and altered heart physiology in mouse embryos. To test if embryonic effects progress into an adult phenotype, we investigated whether Ahr ablation or TCDD exposure in utero resulted in cardiac abnormalities in adult mice long after removal of the agent. Ten-months old adult Ahr -/- and in utero TCDD-exposed Ahr +/+ mice showed sexually dimorphic abnormal cardiovascular phenotypes characterized by echocardiographic findings of hypertrophy, ventricular dilation and increased heart weight, resting heart rate and systolic and mean blood pressure, and decreased exercise tolerance. Underlying these effects, genes in signaling networks related to cardiac hypertrophy and mitochondrial function were differentially expressed. Cardiac dysfunction in mouse embryos resulting from AHR signaling disruption seems to progress into abnormal cardiac structure and function that predispose adults to cardiac disease, but while embryonic dysfunction is equally robust in males and females, the adult abnormalities are more prevalent in females, with the highest severity in Ahr -/- females. The findings reported here underscore the conclusion that AHR signaling in the developing heart is one potential target of environmental factors associated with cardiovascular disease.


Investigative Ophthalmology & Visual Science | 2014

Eyelid closure in embryogenesis is required for ocular adnexa development.

Qinghang Meng; Maureen Mongan; Vinicius Carreira; Hisaka Kurita; Chia-Yang Liu; Winston W.-Y. Kao; Ying Xia

PURPOSE Mammalian eye development requires temporary fusion of the upper and lower eyelids in embryogenesis. Failure of lid closure in mice leads to an eye open at birth (EOB) phenotype. Many genetic mutant strains develop this phenotype and studies of the mutants lead to a better understanding of the signaling mechanisms of morphogenesis. The present study investigates the roles of lid closure in eye development. METHODS Seven mutant mouse strains were generated by different gene ablation strategies that inactivated distinct signaling pathways. These mice, including systemic ablation of Map3k1 and Dkk2, ocular surface epithelium (OSE) knockout of c-Jun and Egfr, conditional knockout of Shp2 in stratified epithelium (SE), as well as the Map3k1/Jnk1 and Map3k1/Rhoa compound mutants, all exhibited defective eyelid closure. The embryonic and postnatal eyes in these mice were characterized by histology and immunohistochemistry. RESULTS Some eye abnormalities, such as smaller lens in the Map3k1-null mice and Harderian gland hypoplasia in the Dkk2-null mice, appeared to be mutant strain-specific, whereas other abnormalities were seen in all mutants examined. The common defects included corneal erosion/ulceration, meibomian gland hypoplasia, truncation of the eyelid tarsal muscles, failure of levator palpebrae superioris (LPS) extension into the upper eyelid and misplacement of the inferior oblique (IO) muscle and inferior rectus (IR) muscle. The muscle defects were traced to the prenatal fetuses. CONCLUSIONS In addition to providing a protective barrier for the ocular surface, eyelid closure in embryogenesis is required for the development of ocular adnexa, including eyelid and extraocular muscles.


Cardiovascular Pathology | 2014

Increased fibrosis and progression to heart failure in MRL mice following ischemia/reperfusion injury

Dia Smiley; Margaret A. Smith; Vinicius Carreira; Min Jiang; Sheryl E. Koch; Melissa Kelley; Jack Rubinstein; W. Keith Jones; Michael Tranter

The cardiac regenerative capacity of MRL/MpJ mouse remains a controversy. Although the MRL mouse has been reported to exhibit minimal scarring and subsequent cardiac regeneration after cryoinjury of the right ventricle, multiple studies have been unable to replicate this cardiac regenerative capacity after both cryogenic and coronary ligation cardiac injury. Therefore, we evaluated the cardiac regenerative wound-healing response and functional recovery of MRL mice compared to C57 mice, in response to a clinically relevant left ventricular (LV) coronary ligation. Male MRL/MpJ+/+ and C57BL/6 mice underwent left coronary artery ligation followed by reperfusion. Cardiac function was evaluated by echocardiography [LV ejection fraction (LVEF), LV end-diastolic volume (LVEDV), LV mass, wall thickness] at 24 hours post-ischemia and weekly for 13 weeks thereafter. Hearts were also analyzed histologically for individual cardiomyocyte hypertrophy and cardiac fibrosis. Our results show that contrary to prior reports of cardiac regenerations, MRL mice progress to heart failure more rapidly following I/R injury as marked by a significant decrease in LVEF, increase in LVEDV, LV mass, individual myocyte size, and fibrosis in the post-ischemic myocardium. Therefore, we conclude that MRL mice do not exhibit regeneration of the LV or enhanced functional improvement in response to coronary ligation. However, unlike prior studies, we matched initial infarct size in MRL and C57 mice, used high frequency echocardiography, and histological analysis to reach this conclusion. The prospect of cardiac regeneration after ischemia in MRL mice seems to have attenuated interest, given the multiple negative studies and the promise of stem cell cardiac regeneration. However, our novel observation that MRL may possess an impaired compensated hypertrophy response makes the MRL mouse strain an interesting model in the study of cardiac hypertrophy.


Toxicological Sciences | 2015

Ah Receptor Signaling Controls the Expression of Cardiac Development and Homeostasis Genes.

Vinicius Carreira; Yunxia Fan; Qing Wang; Xiang Zhang; Hisaka Kurita; Chia-I Ko; Mindi Naticchioni; Min Jiang; Sheryl E. Koch; Mario Medvedovic; Ying Xia; Jack Rubinstein; Alvaro Puga

Congenital heart disease (CHD) is the most common congenital abnormality and one of the leading causes of newborn death throughout the world. Despite much emerging scientific information, the precise etiology of this disease remains elusive. Here, we show that the aryl hydrocarbon receptor (AHR) regulates the expression of crucial cardiogenesis genes and that interference with endogenous AHR functions, either by gene ablation or by agonist exposure during early development, causes overlapping structural and functional cardiac abnormalities that lead to altered fetal heart physiology, including higher heart rates, right and left ventricle dilation, higher stroke volume, and reduced ejection fraction. With striking similarity between AHR knockout (Ahr(-/-)) and agonist-exposed wild type (Ahr(+/+)) embryos, in utero disruption of endogenous AHR functions converge into dysregulation of molecular mechanisms needed for attainment and maintenance of cardiac differentiation, including the pivotal signals regulated by the cardiogenic transcription factor NKH2.5, energy balance via oxidative phosphorylation and TCA cycle and global mitochondrial function and homeostasis. Our findings suggest that AHR signaling in the developing mammalian heart is central to the regulation of pathways crucial for cellular metabolism, cardiogenesis, and cardiac function, which are potential targets of environmental factors associated with CHD.


Developmental Biology | 2013

Deciphering gene expression program of MAP3K1 in mouse eyelid morphogenesis.

Chang Jin; Jing Chen; Qinghang Meng; Vinicius Carreira; Neville N.C. Tam; Esmond Geh; Saikumar Karyala; Shuk-Mei Ho; Xiangtian Zhou; Mario Medvedovic; Ying Xia

Embryonic eyelid closure involves forward movement and ultimate fusion of the upper and lower eyelids, an essential step of mammalian ocular surface development. Although its underlying mechanism of action is not fully understood, a functional mitogen-activated protein kinase kinase kinase 1 (MAP3K1) is required for eyelid closure. Here we investigate the molecular signatures of MAP3K1 in eyelid morphogenesis. At mouse gestational day E15.5, the developmental stage immediately prior to eyelid closure, MAP3K1 expression is predominant in the eyelid leading edge (LE) and the inner eyelid (IE) epithelium. We used laser capture microdissection (LCM) to obtain highly enriched LE and IE cells from wild type and MAP3K1-deficient fetuses and analyzed genome-wide expression profiles. The gene expression data led to the identification of three distinct developmental features of MAP3K1. First, MAP3K1 modulated Wnt and Sonic hedgehog signals, actin reorganization, and proliferation only in LE but not in IE epithelium, illustrating the temporal-spatial specificity of MAP3K1 in embryogenesis. Second, MAP3K1 potentiated AP-2α expression and SRF and AP-1 activity, but its target genes were enriched for binding motifs of AP-2α and SRF, and not AP-1, suggesting the existence of novel MAP3K1-AP-2α/SRF modules in gene regulation. Third, MAP3K1 displayed variable effects on expression of lineage specific genes in the LE and IE epithelium, revealing potential roles of MAP3K1 in differentiation and lineage specification. Using LCM and expression array, our studies have uncovered novel molecular signatures of MAP3K1 in embryonic eyelid closure.


Toxicological Sciences | 2015

Long-term Coexposure to Hexavalent Chromium and B[a]P Causes Tissue-Specific Differential Biological Effects in Liver and Gastrointestinal Tract of Mice

Francisco Javier Sánchez-Martín; Yunxia Fan; Vinicius Carreira; Jerald L. Ovesen; Andrew Vonhandorf; Ying Xia; Alvaro Puga

Complex mixtures of environmental agents often cause mixture-specific health effects that cannot be accounted for by a single mechanism. To study the biological effects of exposure to a mixture of chromium-VI and benzo[a]pyrene (B[a]P), often found together in the environment, we exposed mice for 60 days to 0, 55, 550, or 5500 ppb Cr(VI) in drinking water followed by 90 days of coexposure to B[a]P at 0, 1.25, 12.5, or 125 mg/kg/day and examined liver and gastrointestinal (GI) tract for exposure effects. In the liver, the mixture caused more significant histopathology than expected from the sum of effects of the individual components, while in the GI tract, Cr(VI) alone caused significant enterocyte hypertrophy and increases in cell proliferation and DNA damage that were also observed in mice coexposed to B[a]P. Expression of genes involved in drug metabolism, tumor suppression, oxidative stress, and inflammation was altered in mixed exposures relative to control and to singly exposed mice. Drug metabolism and oxidative stress genes were upregulated and tumor suppressor and inflammation genes downregulated in the proximal GI tract, whereas most markers were upregulated in the distal GI tract and downregulated in the liver. Oral exposure to Cr(VI) and B[a]P mixtures appears to have tissue-specific differential consequences in liver and GI tract that cannot be predicted from the effects of each individual toxicant. Tissue specificity may be particularly critical in cases of extended exposure to mixtures of these agents, as may happen in the occupational setting or in areas where drinking water contains elevated levels of Cr(VI).


Toxicologic Pathology | 2016

Carbon Nanotube and Asbestos Exposures Induce Overlapping but Distinct Profiles of Lung Pathology in Non-Swiss Albino CF-1 Mice

Evan A. Frank; Vinicius Carreira; M. Eileen Birch; Jagjit S. Yadav

Carbon nanotubes (CNTs) are emerging as important occupational and environmental toxicants owing to their increasing prevalence and potential to be inhaled as airborne particles. CNTs are a concern because of their similarities to asbestos, which include fibrous morphology, high aspect ratio, and biopersistence. Limitations in research models have made it difficult to experimentally ascertain the risk of CNT exposures to humans and whether these may lead to lung diseases classically associated with asbestos, such as mesothelioma and fibrosis. In this study, we sought to comprehensively compare profiles of lung pathology in mice following repeated exposures to multiwall CNTs or crocidolite asbestos (CA). We show that both exposures resulted in granulomatous inflammation and increased interstitial collagen; CA exposures caused predominantly bronchoalveolar hyperplasia, whereas CNT exposures caused alveolar hyperplasia of type II pneumocytes (T2Ps). T2Ps isolated from CNT-exposed lungs were found to have upregulated proinflammatory genes, including interleukin 1ß (IL-1ß), in contrast to those from CA exposed. Immunostaining in tissue showed that while both toxicants increased IL-1ß protein expression in lung cells, T2P-specific IL-1ß increases were greater following CNT exposure. These results suggest related but distinct mechanisms of action by CNTs versus asbestos which may lead to different outcomes in the 2 exposure types.


Toxicology | 2016

Ah receptor expression in cardiomyocytes protects adult female mice from heart dysfunction induced by TCDD exposure.

Hisaka Kurita; Vinicius Carreira; Yunxia Fan; Min Jiang; Mindi Naticchioni; Sheryl E. Koch; Jack Rubinstein; Alvaro Puga

Epidemiological studies in humans and experimental work in rodents suggest that exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a persistent environmental toxicant, is associated with incidence of heart disease. Although TCDD toxicity depends by and large on the aryl hydrocarbon receptor (AHR), the role of the cardiac AHR in TCDD induced cardiovascular disease is not well defined. To determine whether the Ahr gene mediates disruption of heart function by TCDD, we generated a cardiomyocyte-specific Ahr knockout mouse by crossing Ahr(fx/fx) mice with βMhc:cre/+ mice, in which expression of Cre recombinase is driven by the promoter of the βMhc (myosin heavy chain-beta) gene. Starting at three months of age, mice with cardiomyocyte-specific Ahr ablation were exposed to 1μg/kg/week of TCDD or control vehicle by oral gavage for an additional three months. Relative to unexposed controls, TCDD-exposure induced cardiomyocyte Ahr-independent changes in males but not females, including a significant increase in body weight, blood pressure, and cardiac hypertrophy and a decrease in cardiac ejection fraction. TCDD exposure also induced cardiomyocyte Ahr-dependent changes in fibrosis and calcium signaling gene expression in both males and females. TCDD exposure appears to cause sexually dimorphic effects on heart function and induce fibrosis and changes in calcium signaling in both males and females through activation of the cardiomyocyte-specific Ahr.

Collaboration


Dive into the Vinicius Carreira's collaboration.

Top Co-Authors

Avatar

Ying Xia

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar

Alvaro Puga

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar

Jack Rubinstein

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Min Jiang

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar

Sheryl E. Koch

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar

Yunxia Fan

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar

Hisaka Kurita

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar

Chia-I Ko

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar

Mindi Naticchioni

University of Cincinnati Academic Health Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge