Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vinicius M. Gadotti is active.

Publication


Featured researches published by Vinicius M. Gadotti.


Cell Reports | 2015

Role of Prelimbic GABAergic Circuits in Sensory and Emotional Aspects of Neuropathic Pain

Zizhen Zhang; Vinicius M. Gadotti; Lina Chen; Ivana A. Souza; Patrick L. Stemkowski; Gerald W. Zamponi

Noxious stimuli are detected by peripheral nociceptors and then transmitted to higher CNS centers, where they are perceived as an unpleasant sensation. The mechanisms that govern the emotional component associated with pain are still incompletely understood. Here, we used optogenetic approaches both in vitro and in vivo to address this issue. We found that peripheral nerve injury inhibits pyramidal cell firing in the prelimbic area of the prefrontal cortex as a result of feed-forward inhibition mediated by parvalbumin-expressing GABAergic interneurons. In addition, activation of inhibitory archaerhodopsin or excitatory channelrhodopsin-2 in these neurons decreased and increased pain responses, respectively, in freely moving mice and accordingly modulated conditioned place preference scores and place escape/avoidance behavior. Our findings thus demonstrate an important role of the prelimbic area in sensory and emotional aspects of pain and identify GABAergic circuits in this region as a potential target for pain therapeutics.


Molecular Pain | 2015

Small organic molecule disruptors of Cav3.2 - USP5 interactions reverse inflammatory and neuropathic pain.

Vinicius M. Gadotti; Agustin Garcia Caballero; N. Daniel Berger; Clare M Gladding; Lina Chen; Tom A. Pfeifer; Gerald W. Zamponi

BACKGROUND Cav3.2 channels facilitate nociceptive transmission and are upregulated in DRG neurons in response to nerve injury or peripheral inflammation. We reported that this enhancement of Cav3.2 currents in afferent neurons is mediated by deubiquitination of the channels by the deubiquitinase USP5, and that disrupting USP5/Cav3.2 channel interactions protected from inflammatory and neuropathic pain. RESULTS Here we describe the development of a small molecule screening assay for USP5-Cav3.2 disruptors, and report on two hits of a ~5000 compound screen - suramin and the flavonoid gossypetin. In mouse models of inflammatory pain and neuropathic pain, both suramin and gossypetin produced dose-dependent and long-lasting mechanical anti-hyperalgesia that was abolished or greatly attenuated in Cav3.2 null mice. Suramin and Cav3.2/USP5 Tat-disruptor peptides were also tested in models of diabetic neuropathy and visceral pain, and provided remarkable protection. CONCLUSIONS Overall, our findings provide proof of concept for a new class of analgesics that target T-type channel deubiquitination.BackgroundCav3.2 channels facilitate nociceptive transmission and are upregulated in DRG neurons in response to nerve injury or peripheral inflammation. We reported that this enhancement of Cav3.2 currents in afferent neurons is mediated by deubiquitination of the channels by the deubiquitinase USP5, and that disrupting USP5/Cav3.2 channel interactions protected from inflammatory and neuropathic pain.ResultsHere we describe the development of a small molecule screening assay for USP5-Cav3.2 disruptors, and report on two hits of a ~5000 compound screen - suramin and the flavonoid gossypetin. In mouse models of inflammatory pain and neuropathic pain, both suramin and gossypetin produced dose-dependent and long-lasting mechanical anti-hyperalgesia that was abolished or greatly attenuated in Cav3.2 null mice. Suramin and Cav3.2/USP5 Tat-disruptor peptides were also tested in models of diabetic neuropathy and visceral pain, and provided remarkable protection.ConclusionsOverall, our findings provide proof of concept for a new class of analgesics that target T-type channel deubiquitination.


Behavioural Brain Research | 2012

Depressive-like behaviour of mice lacking cellular prion protein

Vinicius M. Gadotti; Stephan Bonfield; Gerald W. Zamponi

Cellular Prion Protein (PrP(C)) is known to mediate a protective role in several neurological conditions such as ischemia and epilepsy. However, so far, little information is available concerning the role of PrP(C) in psychiatric disorders such as depression. Here, we have used PrP(C) null mice to examine a putative role of PrP(C) in depressive-like states. Prion protein null mice exhibited depressive-like behaviour when compared to wild-type mice in both the Forced Swimming Test (FST) and Tail Suspension Test (TST). The clinical antidepressant drug imipramine and the NMDA receptor antagonist MK-801 reversed the depressive-like behaviour observed for knockout mice in the TST. The present data thus indicate that PrP(C) exerts a critical role in modulating the depressive-like state in mice, reinforcing the notion that PrP(C) might be associated with alterations in mood disorder states, and suggests a possible role of PrP(C) as a potential drug target for treating depressive disorders.


Pain Medicine | 2012

Ankle Joint Mobilization Decreases Hypersensitivity by Activation of Peripheral Opioid Receptors in a Mouse Model of Postoperative Pain

Daniel Martins; Franciane Bobinski; Leidiane Mazzardo-Martins; Francisco José Cidral-Filho; Francisney P. Nascimento; Vinicius M. Gadotti; Adair R.S. Santos

OBJECTIVE Investigate whether ankle joint mobilization (AJM) decreases hypersensitivity in the mouse plantar incision (PI) model of postoperative pain as well as to analyze the possible mechanisms involved in this effect. DESIGN Experiment 1: PI male Swiss mice (25-35 g, N = eight animals per group) were subjected to five sessions of AJM, each lasting either 9 or 3 minutes. AJM movement was applied at a grade III as defined by Maitland. Paw withdrawal frequency to mechanical stimuli was assessed before realization of PI and before and after daily AJM sessions. Mechanical hypersensitivity was also assessed following systemic (intraperitoneal [i.p.]) and local (intraplantar) injection of naloxone (a nonselective opioid receptor antagonist; 1 mg/kg, i.p.; 5 µg/paw, respectively, experiment 2); and systemic injection of fucoidin (100 µg/mouse, i.p., an inhibitor of leukocyte rolling, experiment 3) in different groups of mice. RESULTS Nine but not 3 minutes of AJM reduced mechanical hypersensitivity caused by PI, an effect that was prevented by systemic and local administrations of naloxone but not by fucoidin. CONCLUSIONS Our results indicate that joint mobilization reduces postoperative pain by activation of the peripheral opioid pathway. However, antihypersensitivity induced by AJM is apparently not limited by the number of opioid-containing leukocytes but by opioid receptors availability in sensory neurons. A better understanding of the peripheral mechanisms of AJM could stimulate therapists to integrate joint mobilization with strategies also known to influence endogenous pain control, such as exercise, acupuncture, and transcutaneous electrical nerve stimulation to potentiate endogenous analgesia.


Molecular Pain | 2013

Analgesic effect of a mixed T-type channel inhibitor/CB2 receptor agonist

Vinicius M. Gadotti; Haitao You; Ravil R. Petrov; N. Daniel Berger; Philippe Diaz; Gerald W. Zamponi

BackgroundCannabinoid receptors and T-type calcium channels are potential targets for treating pain. Here we report on the design, synthesis and analgesic properties of a new mixed cannabinoid/T-type channel ligand, NMP-181.ResultsNMP-181 action on CB1 and CB2 receptors was characterized in radioligand binding and in vitro GTPγ[35S] functional assays, and block of transiently expressed human Cav3.2 T-type channels by NMP-181 was analyzed by patch clamp. The analgesic effects and in vivo mechanism of action of NMP-181 delivered spinally or systemically were analyzed in formalin and CFA mouse models of pain. NMP-181 inhibited peak CaV3.2 currents with IC50 values in the low micromolar range and acted as a CB2 agonist. Inactivated state dependence further augmented the inhibitory action of NMP-181. NMP-181 produced a dose-dependent antinociceptive effect when administered either spinally or systemically in both phases of the formalin test. Both i.t. and i.p. treatment of mice with NMP-181 reversed the mechanical hyperalgesia induced by CFA injection. NMP-181 showed no antinocieptive effect in CaV3.2 null mice. The antinociceptive effect of intrathecally delivered NMP-181 in the formalin test was reversed by i.t. treatment of mice with AM-630 (CB2 antagonist). In contrast, the NMP-181-induced antinociception was not affected by treatment of mice with AM-281 (CB1 antagonist).ConclusionsOur work shows that both T-type channels as well as CB2 receptors play a role in the antinociceptive action of NMP-181, and also provides a novel avenue for suppressing chronic pain through novel mixed T-type/cannabinoid receptor ligands.


Molecular Pain | 2011

Cellular prion protein protects from inflammatory and neuropathic pain

Vinicius M. Gadotti; Gerald W Zamponi

Cellular prion protein (PrPC) inhibits N-Methyl-D-Aspartate (NMDA) receptors. Since NMDA receptors play an important role in the transmission of pain signals in the dorsal horn of spinal cord, we thus wanted to determine if PrPC null mice show a reduced threshold for various pain behaviours.We compared nociceptive thresholds between wild type and PrPC null mice in models of inflammatory and neuropathic pain, in the presence and the absence of a NMDA receptor antagonist. 2-3 months old male PrPC null mice exhibited an MK-801 sensitive decrease in the paw withdrawal threshold in response both mechanical and thermal stimuli. PrPC null mice also exhibited significantly longer licking/biting time during both the first and second phases of formalin-induced inflammation of the paw, which was again prevented by treatment of the mice with MK-801, and responded more strongly to glutamate injection into the paw. Compared to wild type animals, PrPC null mice also exhibited a significantly greater nociceptive response (licking/biting) after intrathecal injection of NMDA. Sciatic nerve ligation resulted in MK-801 sensitive neuropathic pain in wild-type mice, but did not further augment the basal increase in pain behaviour observed in the null mice, suggesting that mice lacking PrPC may already be in a state of tonic central sensitization. Altogether, our data indicate that PrPC exerts a critical role in modulating nociceptive transmission at the spinal cord level, and fit with the concept of NMDA receptor hyperfunction in the absence of PrPC.


ACS Chemical Neuroscience | 2015

Characterization of Novel Cannabinoid Based T‑Type Calcium Channel Blockers with Analgesic Effects

Chris Bladen; Steven W. McDaniel; Vinicius M. Gadotti; Ravil R. Petrov; N. Daniel Berger; Philippe Diaz; Gerald W. Zamponi

Low-voltage-activated (T-type) calcium channels are important regulators of the transmission of nociceptive information in the primary afferent pathway and finding ligands that modulate these channels is a key focus of the drug discovery field. Recently, we characterized a set of novel compounds with mixed cannabinoid receptor/T-type channel blocking activity and examined their analgesic effects in animal models of pain. Here, we have built on these previous findings and synthesized a new series of small organic compounds. We then screened them using whole-cell voltage clamp techniques to identify the most potent T-type calcium channel inhibitors. The two most potent blockers (compounds 9 and 10) were then characterized using radioligand binding assays to determine their affinity for CB1 and CB2 receptors. The structure–activity relationship and optimization studies have led to the discovery of a new T-type calcium channel blocker, compound 9. Compound 9 was efficacious in mediating analgesia in mouse models of acute inflammatory pain and in reducing tactile allodynia in the partial nerve ligation model. This compound was shown to be ineffective in Cav3.2 T-type calcium channel null mice at therapeutically relevant concentrations, and it caused no significant motor deficits in open field tests. Taken together, our data reveal a novel class of compounds whose physiological and therapeutic actions are mediated through block of Cav3.2 calcium channels.


Molecular Pain | 2011

Functional characterization and analgesic effects of mixed cannabinoid receptor/T-type channel ligands.

Haitao You; Vinicius M. Gadotti; Ravil R. Petrov; Gerald W. Zamponi; Philippe Diaz

BackgroundBoth T-type calcium channels and cannabinoid receptors modulate signalling in the primary afferent pain pathway. Here, we investigate the analgesics activities of a series of novel cannabinoid receptor ligands with T-type calcium channel blocking activity.ResultsNovel compounds were characterized in radioligand binding assays and in vitro functional assays at human and rat CB1 and CB2 receptors. The inhibitory effects of these compounds on transient expressed human T-type calcium channels were examined in tsA-201 cells using standard whole-cell voltage clamp techniques, and their analgesic effects in response to various administration routes (intrathecally, intraplantarly, intraperitoneally) assessed in the formalin model. A series of compounds were synthesized and evaluated for channel and receptor activity. Compound NMP-7 acted as non-selective CB1/CB2 agonist while NMP4 was found to be a CB1 partial agonist and CB2 inverse agonist. Furthermore, NMP-144 behaved as a selective CB2 inverse agonist. All of these three compounds completely inhibited peak Cav3.2 currents with IC50 values in the low micromolar range. All compounds mediated analgesic effects in the formalin model, but depending on the route of administration, could differentially affect phase 1 and phase 2 of the formalin response.ConclusionsOur results reveal that a set of novel cannabinioid receptor ligands potently inhibit T-type calcium channels and show analgesic effects in vivo. Our findings suggest possible novel means of mediating pain relief through mixed T-type/cannabinoid receptor ligands.


Pflügers Archiv: European Journal of Physiology | 2015

Analgesic effect of a broad-spectrum dihydropyridine inhibitor of voltage-gated calcium channels

Vinicius M. Gadotti; Chris Bladen; Fang Xiong Zhang; Lina Chen; Miyase Gözde Gündüz; Rahime Şimşek; Cihat Şafak; Gerald W. Zamponi

Voltage-activated calcium channels are important facilitators of nociceptive transmission in the primary afferent pathway. Consequently, molecules that block these channels are of potential use as pain therapeutics. Our group has recently reported on the identification of a novel class of dihydropyridines (DHPs) that included compounds with preferential selectivity for T-type over L-type channels. Among those compounds, M4 was found to be an equipotent inhibitor of both Cav1.2 L- and Cav3.2 T-type calcium channels. Here, we have further characterized the effects of this compound on other types of calcium channels and examined its analgesic effect when delivered either spinally (i.t.) or systemically (i.p.) to mice. Both delivery routes resulted in antinociception in a model of acute pain. Furthermore, M4 was able to reverse mechanical hyperalgesia produced by nerve injury when delivered intrathecally. M4 retained partial activity when delivered to Cav3.2 null mice, indicating that this compound acts on multiple targets. Additional whole-cell patch clamp experiments in transfected tsA-201 cells revealed that M4 also effectively blocks Cav3.3 (T-type) and Cav2.2 (N-type) currents. Altogether, our data indicate that broad-spectrum inhibition of multiple calcium channel subtypes can lead to potent analgesia in rodents.


Molecular Pain | 2014

NMP-7 inhibits chronic inflammatory and neuropathic pain via block of Cav3.2 T-type calcium channels and activation of CB2 receptors

N. Daniel Berger; Vinicius M. Gadotti; Ravil R. Petrov; Kevin Chapman; Philippe Diaz; Gerald W. Zamponi

BackgroundT-type calcium channels and cannabinoid receptors are known to play important roles in chronic pain, making them attractive therapeutic targets. We recently reported on the design, synthesis and analgesic properties of a novel T-type channel inhibitor (NMP-7), which also shows mixed agonist activity on CB1 and CB2 receptors in vitro. Here, we analyzed the analgesic effect of systemically delivered NMP-7 (intraperitoneal (i.p.) or intragstric (i.g.) routes) on mechanical hypersensitivity in inflammatory pain induced by Complete Freund’s Adjuvant (CFA) and neuropathic pain induced by sciatic nerve injury.ResultsNMP-7 delivered by either i.p. or i.g. routes produced dose-dependent inhibition of mechanical hyperalgesia in mouse models of inflammatory and neuropathic pain, without altering spontaneous locomotor activity in the open-field test at the highest active dose. Neither i.p. nor i.g. treatment reduced peripheral inflammation per se, as evaluated by examining paw edema and myeloperoxidase activity. The antinociception produced by NMP-7 in the CFA test was completely abolished in CaV3.2-null mice, confirming CaV3.2 as a key target. The analgesic action of intraperitoneally delivered NMP-7 was not affected by pretreatment of mice with the CB1 antagonist AM281, but was significantly attenuated by pretreatment with the CB2 antagonist AM630, suggesting that CB2 receptors, but not CB1 receptors are involved in the action of NMP-7 in vivo.ConclusionsOverall, our work shows that NMP-7 mediates a significant analgesic effect in a model of persistent inflammatory and chronic neuropathic pain by way of T-type channel modulation and CB2 receptor activation. Thus, this study provides a novel therapeutic avenue for managing chronic pain conditions via mixed CB ligands/T-type channel blockers.

Collaboration


Dive into the Vinicius M. Gadotti's collaboration.

Top Co-Authors

Avatar

Gerald W. Zamponi

Alberta Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Lina Chen

University of Calgary

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge