Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vinod K. Batra is active.

Publication


Featured researches published by Vinod K. Batra.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Energy analysis of chemistry for correct insertion by DNA polymerase β

Ping Lin; Lars C. Pedersen; Vinod K. Batra; William A. Beard; Samuel H. Wilson; Lee G. Pedersen

X-ray crystallographic structures of human DNA polymerase β with nonhydrolyzable analogs containing all atoms in the active site required for catalysis provide a secure starting point for a theoretical analysis (quantum mechanics/molecular mechanics) of the mechanism of chemistry without biasing of modeling assumptions as required in previous studies. These structures provide the basis for a detailed quantum mechanics/molecular mechanics study of the path for the complete transfer of a monophosphate nucleoside donor to the sugar acceptor in the active site. The reaction is largely associative with the main energetic step preceded by proton transfer from the terminal primer deoxyribose O3′ to Asp-256. The key residues that provide electrostatic stabilization of the transition state are identified and compared with those identified by mutational studies.


Journal of Biological Chemistry | 2009

DNA Polymerase β Substrate Specificity: SIDE CHAIN MODULATION OF THE “A-RULE”*

William A. Beard; David D. Shock; Vinod K. Batra; Lars C. Pedersen; Samuel H. Wilson

Apurinic/apyrimidinic (AP) sites are continuously generated in genomic DNA. Left unrepaired, AP sites represent noninstructional premutagenic lesions that are impediments to DNA synthesis. When DNA polymerases encounter an AP site, they generally insert dAMP. This preferential insertion is referred to as the A-rule. Crystallographic structures of DNA polymerase (pol) β, a family X polymerase, with active site mismatched nascent base pairs indicate that the templating (i.e. coding) base is repositioned outside of the template binding pocket thereby diminishing interactions with the incorrect incoming nucleotide. This effectively produces an abasic site because the template pocket is devoid of an instructional base. However, the template pocket is not empty; an arginine residue (Arg-283) occupies the space vacated by the templating nucleotide. In this study, we analyze the kinetics of pol β insertion opposite an AP site and show that the preferential incorporation of dAMP is lost with the R283A mutant. The crystallographic structures of pol β bound to gapped DNA with an AP site analog (tertrahydrofuran) in the gap (binary complex) and with an incoming nonhydrolyzable dATP analog (ternary complex) were solved. These structures reveal that binding of the dATP analog induces a closed polymerase conformation, an unstable primer terminus, and an upstream shift of the templating residue even in the absence of a template base. Thus, dATP insertion opposite an abasic site and dATP misinsertions have common features.Apurinic/apyrimidinic (AP) sites are continuously generated in genomic DNA. Left unrepaired, AP sites represent noninstructional premutagenic lesions that are impediments to DNA synthesis. When DNA polymerases encounter an AP site, they generally insert dAMP. This preferential insertion is referred to as the A-rule. Crystallographic structures of DNA polymerase (pol) beta, a family X polymerase, with active site mismatched nascent base pairs indicate that the templating (i.e. coding) base is repositioned outside of the template binding pocket thereby diminishing interactions with the incorrect incoming nucleotide. This effectively produces an abasic site because the template pocket is devoid of an instructional base. However, the template pocket is not empty; an arginine residue (Arg-283) occupies the space vacated by the templating nucleotide. In this study, we analyze the kinetics of pol beta insertion opposite an AP site and show that the preferential incorporation of dAMP is lost with the R283A mutant. The crystallographic structures of pol beta bound to gapped DNA with an AP site analog (tertrahydrofuran) in the gap (binary complex) and with an incoming nonhydrolyzable dATP analog (ternary complex) were solved. These structures reveal that binding of the dATP analog induces a closed polymerase conformation, an unstable primer terminus, and an upstream shift of the templating residue even in the absence of a template base. Thus, dATP insertion opposite an abasic site and dATP misinsertions have common features.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Incorrect nucleotide insertion at the active site of a G:A mismatch catalyzed by DNA polymerase β

Ping Lin; Vinod K. Batra; Lars C. Pedersen; William A. Beard; Samuel H. Wilson; Lee G. Pedersen

Based on a recent ternary complex crystal structure of human DNA polymerase β with a G:A mismatch in the active site, we carried out a theoretical investigation of the catalytic mechanism of incorrect nucleotide incorporation using molecular dynamics simulation, quantum mechanics, combined quantum mechanics, and molecular mechanics methods. A two-stage mechanism is proposed with a nonreactive active-site structural rearrangement prechemistry step occurring before the nucleotidyl transfer reaction. The free energy required for formation of the prechemistry state is found to be the major factor contributing to the decrease in the rate of incorrect nucleotide incorporation compared with correct insertion and therefore to fidelity enhancement. Hence, the transition state and reaction barrier for phosphodiester bond formation after the prechemistry state are similar to that for correct insertion reaction. Key residues that provide electrostatic stabilization of the transition state are identified.


Journal of the American Chemical Society | 2010

Halogenated beta,gamma-Methylene- and Ethylidene-dGTP-DNA Ternary Complexes with DNA Polymerase beta: Structural Evidence for Stereospecific Binding of the Fluoromethylene Analogues.

Vinod K. Batra; Lars C. Pedersen; William A. Beard; Samuel H. Wilson; Boris A. Kashemirov; Thomas G. Upton; Myron F. Goodman; Charles E. McKenna

Beta,gamma-fluoromethylene analogues of nucleotides are considered to be useful mimics of the natural substrates, but direct structural evidence defining their active site interactions has not been available, including the influence of the new chiral center introduced at the CHF carbon, as in beta,gamma-fluoromethylene-dGTP, which forms an active site complex with DNA polymerase beta, a repair enzyme that plays an important role in base excision repair (BER) and oncogenesis. We report X-ray crystallographic results for a series of beta,gamma-CXY dGTP analogues, where X,Y = H, F, Cl, Br, and/or CH(3). For all three R/S monofluorinated analogues examined (CHF, 3/4; CCH(3)F, 13/14; CClF 15/16), a single CXF-diastereomer (3, 13, 16) is observed in the active site complex, with the CXF fluorine atom at a approximately 3 A (bonding) distance to a guanidinium N of Arg183. In contrast, for the CHCl, CHBr, and CHCH(3) analogues, both diasteromers (6/7, 8/9, 10/11) populate the dGTP site in the enzyme complex about equally. The structures of the bound dichloro (5) and dimethyl (12) analogue complexes indicate little to no steric effect on the placement of the bound nucleotide backbone. The results suggest that introduction of a single fluorine atom at the beta,gamma-bridging carbon atom of these dNTP analogues enables a new, stereospecific interaction within the preorganized active site complex that is unique to fluorine. The results also provide the first diverse structural data set permitting an assessment of how closely this class of dNTP analogues mimics the conformation of the parent nucleotide within the active site complex.


Nature Structural & Molecular Biology | 2010

Mutagenic conformation of 8-oxo-7,8-dihydro-2'-dGTP in the confines of a DNA polymerase active site

Vinod K. Batra; William A. Beard; Esther W. Hou; Lars C. Pedersen; Rajendra Prasad; Samuel H. Wilson

The major product of oxidative base damage is 8-oxo-7,8-dihydro-2′-deoxyguanine (8odG). The coding potential of this lesion is modulated by its glycosidic torsion angle that controls whether its Watson-Crick or Hoogsteen edge is used for base pairing. The 2.0-Å structure of DNA polymerase (pol) β bound with 8odGTP opposite template adenine indicates that the modified nucleotide assumes the mutagenic syn conformation and that the nonmutagenic anti conformation would be incompatible with efficient DNA synthesis.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Binary complex crystal structure of DNA polymerase β reveals multiple conformations of the templating 8-oxoguanine lesion.

Vinod K. Batra; David D. Shock; William A. Beard; Charles E. McKenna; Samuel H. Wilson

Oxidation of genomic DNA forms the guanine lesion 7,8-dihydro-8-oxoguanine (8-oxoG). When in the template base position during DNA synthesis the 8-oxoG lesion has dual coding potential by virtue of its anti- and syn-conformations, base pairing with cytosine and adenine, respectively. This impacts mutagenesis, because insertion of adenine opposite template 8-oxoG can result in a G to T transversion. DNA polymerases vary by orders of magnitude in their preferences for mutagenic vs. error-free 8-oxoG lesion bypass. Yet, the structural basis for lesion bypass specificity is not well understood. The DNA base excision repair enzyme DNA polymerase (pol) β is presented with gap-filling synthesis opposite 8-oxoG during repair and has similar insertion efficiencies for dCTP and dATP. We report the structure of pol β in binary complex with template 8-oxoG in a base excision repair substrate. The structure reveals both the syn- and anti-conformations of template 8-oxoG in the confines of the polymerase active site, consistent with the dual coding observed kinetically for this enzyme. A ternary complex structure of pol β with the syn-8-oxoG:anti-A Hoogsteen base pair in the closed fully assembled preinsertion active site is also reported. The syn-conformation of 8-oxoG is stabilized by minor groove hydrogen bonding between the side chain of Arg283 and O8 of 8-oxoG. An adjustment in the position of the phosphodiester backbone 5′-phosphate enables 8-oxoG to adopt the syn-conformation.


Cellular and Molecular Life Sciences | 2010

Base excision repair and design of small molecule inhibitors of human DNA polymerase β.

Samuel H. Wilson; William A. Beard; David D. Shock; Vinod K. Batra; Nisha A. Cavanaugh; Rajendra Prasad; Esther W. Hou; Yuan Liu; Kenjiro Asagoshi; Julie K. Horton; Padmini S. Kedar; Michael J. Carrozza; Aya Masaoka; Michelle Heacock

Base excision repair (BER) can protect a cell after endogenous or exogenous genotoxic stress, and a deficiency in BER can render a cell hypersensitive to stress-induced apoptotic and necrotic cell death, mutagenesis, and chromosomal rearrangements. However, understanding of the mammalian BER system is not yet complete as it is extraordinarily complex and has many back-up processes that complement a deficiency in any one step. Due of this lack of information, we are unable to make accurate predictions on therapeutic approaches targeting BER. A deeper understanding of BER will eventually allow us to conduct more meaningful clinical interventions. In this review, we will cover historical and recent information on mammalian BER and DNA polymerase β and discuss approaches toward development and use of small molecule inhibitors to manipulate BER. With apologies to others, we will emphasize results obtained in our laboratory and those of our collaborators.


Journal of Biological Chemistry | 2011

Molecular Insights into DNA Polymerase Deterrents for Ribonucleotide Insertion

Nisha A. Cavanaugh; William A. Beard; Vinod K. Batra; Lalith Perera; Lee G. Pedersen; Samuel H. Wilson

DNA polymerases can misinsert ribonucleotides that lead to genomic instability. DNA polymerase β discourages ribonucleotide insertion with the backbone carbonyl of Tyr-271; alanine substitution of Tyr-271, but not Phe-272, resulted in a >10-fold loss in discrimination. The Y271A mutant also inserted ribonucleotides more efficiently than wild type on a variety of ribonucleoside (rNMP)-containing DNA substrates. Substituting Mn2+ for Mg2+ decreased sugar discrimination for both wild-type and mutant enzymes primarily by increasing the affinity for rCTP. This facilitated crystallization of ternary substrate complexes of both the wild-type and Y271A mutant enzymes. Crystallographic structures of Y271A- and wild type-substrate complexes indicated that rCTP is well accommodated in the active site but that O2′ of rCTP and the carbonyl oxygen of Tyr-271 or Ala-271 are unusually close (∼2.5 and 2.6 Å, respectively). Structure-based modeling indicates that the local energetic cost of positioning these closely spaced oxygens is ∼2.2 kcal/mol for the wild-type enzyme. Because the side chain of Tyr-271 also hydrogen bonds with the primer terminus, loss of this interaction affects its catalytic positioning. Our results support a model where DNA polymerase β utilizes two strategies, steric and geometric, with a single protein residue to deter ribonucleotide insertion.


Molecular Biology | 2011

A review of recent experiments on step-to-step “hand-off” of the DNA intermediates in mammalian base excision repair pathways

Rajendra Prasad; William A. Beard; Vinod K. Batra; Y. Liu; David D. Shock; Samuel H. Wilson

The current “working model” for mammalian base excision repair involves two sub-pathways termed single-nucleotide base excision repair and long patch base excision repair that are distinguished by their repair patch sizes and the enzymes/co-factors involved. These base excision repair sub-pathways are designed to sequester the various DNA intermediates, passing them along from one step to the next without allowing these toxic molecules to trigger cell cycle arrest, necrotic cell death, or apoptosis. Although a variety of DNA-protein and protein-protein interactions are known for the base excision repair intermediates and enzymes/co-factors, the molecular mechanisms accounting for step-to-step coordination are not well understood. In this review, we explore the question of whether there is an actual step-to-step “hand-off” of the DNA intermediates during base excision repair in vitro. The results show that when base excision repair enzymes are pre-bound to the initial single-nucleotide base excision repair intermediate, the DNA is channeled from apurinic/apyrimidinic endonuclease 1 to DNA polymerase β and then to DNA ligase. In the long patch base excision repair sub-pathway, where the 5′-end of the incised strand is blocked, the intermediate after polymerase β gap filling is not channeled from polymerase β to the subsequent enzyme, flap endonuclease 1. Instead, flap endonuclease 1 must recognize and bind to the intermediate in competition with other molecules.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Synthesis and biological evaluation of fluorinated deoxynucleotide analogs based on bis-(difluoromethylene)triphosphoric acid

G. K. Surya Prakash; Mikhail Zibinsky; Thomas G. Upton; Boris A. Kashemirov; Charles E. McKenna; Keriann Oertell; Myron F. Goodman; Vinod K. Batra; Lars C. Pedersen; William A. Beard; David D. Shock; Samuel H. Wilson; George A. Olah

It is difficult to overestimate the importance of nucleoside triphosphates in cellular chemistry: They are the building blocks for DNA and RNA and important sources of energy. Modifications of biologically important organic molecules with fluorine are of great interest to chemists and biologists because the size and electronegativity of the fluorine atom can be used to make defined structural alterations to biologically important molecules. Although the concept of nonhydrolyzable nucleotides has been around for some time, the progress in the area of modified triphosphates was limited by the lack of synthetic methods allowing to access bisCF2-substituted nucleotide analogs—one of the most interesting classes of nonhydrolyzable nucleotides. These compounds have “correct” polarity and the smallest possible steric perturbation compared to natural nucleotides. No other known nucleotides have these advantages, making bisCF2-substituted analogs unique. Herein, we report a concise route for the preparation of hitherto unknown highly acidic and polybasic bis(difluoromethylene)triphosphoric acid 1 using a phosphorous(III)/phosphorous(V) interconversion approach. The analog 1 compared to triphosphoric acid is enzymatically nonhydrolyzable due to substitution of two bridging oxygen atoms with CF2 groups, maintaining minimal perturbations in steric bulkiness and overall polarity of the triphosphate polyanion. The fluorinated triphosphoric acid 1 was used for the preparation of the corresponding fluorinated deoxynucleotides (dNTPs). One of these dNTP analogs (dT) was demonstrated to fit into DNA polymerase beta (DNA pol β) binding pocket by obtaining a 2.5 Å resolution crystal structure of a ternary complex with the enzyme. Unexpected dominating effect of triphosphate/Mg2+ interaction over Watson–Crick hydrogen bonding was found and discussed.

Collaboration


Dive into the Vinod K. Batra's collaboration.

Top Co-Authors

Avatar

Samuel H. Wilson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

William A. Beard

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Lars C. Pedersen

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Charles E. McKenna

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Boris A. Kashemirov

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Myron F. Goodman

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

David D. Shock

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Keriann Oertell

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Anastasia P. Kadina

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Lee G. Pedersen

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge