Vinod Sundaramoorthy
Macquarie University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vinod Sundaramoorthy.
Human Molecular Genetics | 2014
Manal A. Farg; Vinod Sundaramoorthy; Jessica M. Sultana; Shu Yang; Rachel A.K. Atkinson; Vita Levina; Mark A. Halloran; Paul A. Gleeson; Ian P. Blair; Kai Y. Soo; Anna E. King; Julie D. Atkin
Intronic expansion of a hexanucleotide GGGGCC repeat in the chromosome 9 open reading frame 72 (C9ORF72) gene is the major cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. However, the cellular function of the C9ORF72 protein remains unknown. Here, we demonstrate that C9ORF72 regulates endosomal trafficking. C9ORF72 colocalized with Rab proteins implicated in autophagy and endocytic transport: Rab1, Rab5, Rab7 and Rab11 in neuronal cell lines, primary cortical neurons and human spinal cord motor neurons, consistent with previous predictions that C9ORF72 bears Rab guanine exchange factor activity. Consistent with this notion, C9ORF72 was present in the extracellular space and as cytoplasmic vesicles. Depletion of C9ORF72 using siRNA inhibited transport of Shiga toxin from the plasma membrane to Golgi apparatus, internalization of TrkB receptor and altered the ratio of autophagosome marker light chain 3 (LC3) II:LC3I, indicating that C9ORF72 regulates endocytosis and autophagy. C9ORF72 also colocalized with ubiquilin-2 and LC3-positive vesicles, and co-migrated with lysosome-stained vesicles in neuronal cell lines, providing further evidence that C9ORF72 regulates autophagy. Investigation of proteins interacting with C9ORF72 using mass spectrometry identified other proteins implicated in ALS; ubiquilin-2 and heterogeneous nuclear ribonucleoproteins, hnRNPA2/B1 and hnRNPA1, and actin. Treatment of cells overexpressing C9ORF72 with proteasome inhibitors induced the formation of stress granules positive for hnRNPA1 and hnRNPA2/B1. Immunohistochemistry of C9ORF72 ALS patient motor neurons revealed increased colocalization between C9ORF72 and Rab7 and Rab11 compared with controls, suggesting possible dysregulation of trafficking in patients bearing the C9ORF72 repeat expansion. Hence, this study identifies a role for C9ORF72 in Rab-mediated cellular trafficking.
Human Molecular Genetics | 2013
Manal A. Farg; Kai Y. Soo; Sadaf T. Warraich; Vinod Sundaramoorthy; Ian P. Blair; Julie D. Atkin
Fused in sarcoma (FUS) is mutated in both sporadic amyotrophic lateral sclerosis (ALS) and familial ALS patients. The mechanisms underlying neurodegeneration are not fully understood, but FUS redistributes from the nucleus to the cytoplasm in affected motor neurons, where it triggers endoplasmic reticulum (ER) stress. Ataxin-2 is a polyglutamine protein which normally contains 22 repeats, but expanded repeats (>34) are found in Spinocerebellar Ataxia type 2. Recently ataxin-2 with intermediate length repeats (27-33) was found to increase the risk of ALS. Here we show that ataxin-2 with an ALS-linked intermediate length repeat (Q31) is a potent modifier of FUS pathology in cellular disease models. Translocation of FUS to the cytoplasm and ER stress were significantly enhanced by co-expression of mutant FUS with ataxin-2 Q31. Ataxin-2 also co-localized with FUS in sporadic and FUS-linked familial ALS patient motor neurons, co-precipitated with FUS in ALS spinal cord lysates, and co-localized with FUS in the ER-Golgi compartments in neuronal cell lines. Fragmentation of the Golgi apparatus is linked to neurodegeneration in ALS and here we show that Golgi fragmentation is induced in cells expressing mutant FUS. Moreover, Golgi fragmentation was enhanced, and the early stages of apoptosis were triggered, when ataxin-2 Q31 was co-expressed with mutant FUS. These findings describe new cellular mechanisms linking ALS with ataxin-2 intermediate length polyQ expansions and provide further evidence linking disruption to ER-Golgi compartments and FUS pathology in ALS.
PLOS ONE | 2013
Adam K. Walker; Kai Y. Soo; Vinod Sundaramoorthy; Sonam Parakh; Yi Ma; Manal A. Farg; Robyn H. Wallace; Peter J. Crouch; Bradley J. Turner; Malcolm K. Horne; Julie D. Atkin
In amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration, TAR DNA binding protein 43 (TDP-43) accumulates in the cytoplasm of affected neurons and glia, where it associates with stress granules (SGs) and forms large inclusions. SGs form in response to cellular stress, including endoplasmic reticulum (ER) stress, which is induced in both familial and sporadic forms of ALS. Here we demonstrate that pharmacological induction of ER stress causes TDP-43 to accumulate in the cytoplasm, where TDP-43 also associates with SGs. Furthermore, treatment with salubrinal, an inhibitor of dephosphorylation of eukaryotic initiation factor 2-α, a key modulator of ER stress, potentiates ER stress-mediated SG formation. Inclusions of C-terminal fragment TDP-43, reminiscent of disease-pathology, form in close association with ER and Golgi compartments, further indicating the involvement of ER dysfunction in TDP-43-associated disease. Consistent with this notion, over-expression of ALS-linked mutant TDP-43, and to a lesser extent wildtype TDP-43, triggers several ER stress pathways in neuroblastoma cells. Similarly, we found an interaction between the ER chaperone protein disulphide isomerase and TDP-43 in transfected cell lysates and in the spinal cords of mutant A315T TDP-43 transgenic mice. This study provides evidence for ER stress as a pathogenic pathway in TDP-43-mediated disease.
Nature Communications | 2016
Kelly L. Williams; Simon Topp; Shu Yang; Bradley Smith; Jennifer A. Fifita; Sadaf T. Warraich; Katharine Y. Zhang; Natalie E. Farrawell; Caroline Vance; Xun Hu; Alessandra Chesi; Claire S. Leblond; Albert Lee; Stephanie L. Rayner; Vinod Sundaramoorthy; Carol Dobson-Stone; Mark P. Molloy; Marka van Blitterswijk; Dennis W. Dickson; Ronald C. Petersen; Neill R. Graff-Radford; Bradley F. Boeve; Melissa E. Murray; Cyril Pottier; Emily K. Don; Claire Winnick; Emily P. McCann; Alison L. Hogan; Hussein Daoud; Annie Levert
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are overlapping, fatal neurodegenerative disorders in which the molecular and pathogenic basis remains poorly understood. Ubiquitinated protein aggregates, of which TDP-43 is a major component, are a characteristic pathological feature of most ALS and FTD patients. Here we use genome-wide linkage analysis in a large ALS/FTD kindred to identify a novel disease locus on chromosome 16p13.3. Whole-exome sequencing identified a CCNF missense mutation at this locus. Interrogation of international cohorts identified additional novel CCNF variants in familial and sporadic ALS and FTD. Enrichment of rare protein-altering CCNF variants was evident in a large sporadic ALS replication cohort. CCNF encodes cyclin F, a component of an E3 ubiquitin–protein ligase complex (SCFCyclin F). Expression of mutant CCNF in neuronal cells caused abnormal ubiquitination and accumulation of ubiquitinated proteins, including TDP-43 and a SCFCyclin F substrate. This implicates common mechanisms, linked to protein homeostasis, underlying neuronal degeneration.
Acta Neuropathologica | 2015
Kai-Ying Soo; Mark A. Halloran; Vinod Sundaramoorthy; Sonam Parakh; Reka P. Toth; Katherine A. Southam; Catriona McLean; Peter Lock; Anna King; Manal A. Farg; Julie D. Atkin
Several diverse proteins are linked genetically/pathologically to neurodegeneration in amyotrophic lateral sclerosis (ALS) including SOD1, TDP-43 and FUS. Using a variety of cellular and biochemical techniques, we demonstrate that ALS-associated mutant TDP-43, FUS and SOD1 inhibit protein transport between the endoplasmic reticulum (ER) and Golgi apparatus in neuronal cells. ER–Golgi transport was also inhibited in embryonic cortical and motor neurons obtained from a widely used animal model (SOD1G93A mice), validating this mechanism as an early event in disease. Each protein inhibited transport by distinct mechanisms, but each process was dependent on Rab1. Mutant TDP-43 and mutant FUS both inhibited the incorporation of secretory protein cargo into COPII vesicles as they bud from the ER, and inhibited transport from ER to the ER–Golgi intermediate (ERGIC) compartment. TDP-43 was detected on the cytoplasmic face of the ER membrane, whereas FUS was present within the ER, suggesting that transport is inhibited from the cytoplasm by mutant TDP-43, and from the ER by mutant FUS. In contrast, mutant SOD1 destabilised microtubules and inhibited transport from the ERGIC compartment to Golgi, but not from ER to ERGIC. Rab1 performs multiple roles in ER–Golgi transport, and over-expression of Rab1 restored ER–Golgi transport, and prevented ER stress, mSOD1 inclusion formation and induction of apoptosis, in cells expressing mutant TDP-43, FUS or SOD1. Rab1 also co-localised extensively with mutant TDP-43, FUS and SOD1 in neuronal cells, and Rab1 formed inclusions in motor neurons of spinal cords from sporadic ALS patients, which were positive for ubiquitinated TDP-43, implying that Rab1 is misfolded and dysfunctional in sporadic disease. These results demonstrate that ALS-mutant forms of TDP-43, FUS, and SOD1 all perturb protein transport in the early secretory pathway, between ER and Golgi compartments. These data also imply that restoring Rab1-mediated ER–Golgi transport is a novel therapeutic target in ALS.
Human Molecular Genetics | 2015
Vinod Sundaramoorthy; Adam K. Walker; Vanessa Tan; Jennifer A. Fifita; Emily P. McCann; Kelly L. Williams; Ian P. Blair; Gilles J. Guillemin; Manal A. Farg; Julie D. Atkin
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder primarily affecting motor neurons. Mutations in optineurin cause a small proportion of familial ALS cases, and wild-type (WT) optineurin is misfolded and forms inclusions in sporadic ALS patient motor neurons. However, it is unknown how optineurin mutation or misfolding leads to ALS. Optineurin acts an adaptor protein connecting the molecular motor myosin VI to secretory vesicles and autophagosomes. Here, we demonstrate that ALS-linked mutations p.Q398X and p.E478G disrupt the association of optineurin with myosin VI, leading to an abnormal diffuse cytoplasmic distribution, inhibition of secretory protein trafficking, endoplasmic reticulum (ER) stress and Golgi fragmentation in motor neuron-like NSC-34 cells. We also provide further insight into the role of optineurin as an autophagy receptor. WT optineurin associated with lysosomes and promoted autophagosome fusion to lysosomes in neuronal cells, implying that it mediates trafficking of lysosomes during autophagy in association with myosin VI. However, either expression of ALS mutant optineurin or small interfering RNA-mediated knockdown of endogenous optineurin blocked lysosome fusion to autophagosomes, resulting in autophagosome accumulation. Together these results indicate that ALS-linked mutations in optineurin disrupt myosin VI-mediated intracellular trafficking processes. In addition, in control human patient tissues, optineurin displayed its normal vesicular localization, but in sporadic ALS patient tissues, vesicles were present in a significantly decreased proportion of motor neurons. Optineurin binding to myosin VI was also decreased in tissue lysates from sporadic ALS spinal cords. This study therefore links several previously described pathological mechanisms in ALS, including defects in autophagy, fragmentation of the Golgi and induction of ER stress, to disruption of optineurin function. These findings also indicate that optineurin-myosin VI dysfunction is a common feature of both sporadic and familial ALS.
Cellular and Molecular Life Sciences | 2013
Vinod Sundaramoorthy; Adam K. Walker; Justin J. Yerbury; Kai Ying Soo; Manal A. Farg; Vy Hoang; Rafaa Zeineddine; Damian Spencer; Julie D. Atkin
Amyotrophic lateral sclerosis (ALS) is a fatal and rapidly progressing neurodegenerative disorder and the majority of ALS is sporadic, where misfolding and aggregation of Cu/Zn-superoxide dismutase (SOD1) is a feature shared with familial mutant-SOD1 cases. ALS is characterized by progressive neurospatial spread of pathology among motor neurons, and recently the transfer of extracellular, aggregated mutant SOD1 between cells was demonstrated in culture. However, there is currently no evidence that uptake of SOD1 into cells initiates neurodegenerative pathways reminiscent of ALS pathology. Similarly, whilst dysfunction to the ER–Golgi compartments is increasingly implicated in the pathogenesis of both sporadic and familial ALS, it remains unclear whether misfolded, wildtype SOD1 triggers ER–Golgi dysfunction. In this study we show that both extracellular, native wildtype and mutant SOD1 are taken up by macropinocytosis into neuronal cells. Hence uptake does not depend on SOD1 mutation or misfolding. We also demonstrate that purified mutant SOD1 added exogenously to neuronal cells inhibits protein transport between the ER–Golgi apparatus, leading to Golgi fragmentation, induction of ER stress and apoptotic cell death. Furthermore, we show that extracellular, aggregated, wildtype SOD1 also induces ER–Golgi pathology similar to mutant SOD1, leading to apoptotic cell death. Hence extracellular misfolded wildtype or mutant SOD1 induce dysfunction to ER–Golgi compartments characteristic of ALS in neuronal cells, implicating extracellular SOD1 in the spread of pathology among motor neurons in both sporadic and familial ALS.
Frontiers in Neuroscience | 2015
Vinod Sundaramoorthy; Jessica M. Sultana; Julie D. Atkin
Amyotrophic Lateral Sclerosis (ALS) is an invariably fatal neurodegenerative disorder, which specifically targets motor neurons in the brain, brain stem and spinal cord. Whilst the etiology of ALS remains unknown, fragmentation of the Golgi apparatus is detected in ALS patient motor neurons and in animal/cellular disease models. The Golgi is a highly dynamic organelle that acts as a dispatching station for the vesicular transport of secretory/transmembrane proteins. It also mediates autophagy and maintains endoplasmic reticulum (ER) and axonal homeostasis. Both the trigger for Golgi fragmentation and the functional consequences of a fragmented Golgi apparatus in ALS remain unclear. However, recent evidence has highlighted defects in vesicular trafficking as a pathogenic mechanism in ALS. This review summarizes the evidence describing Golgi fragmentation in ALS, with possible links to other disease processes including cellular trafficking, ER stress, defective autophagy, and axonal degeneration.
Amyotrophic Lateral Sclerosis | 2017
Jennifer A. Fifita; Kelly L. Williams; Vinod Sundaramoorthy; Emily P. McCann; Garth A. Nicholson; Julie D. Atkin; Ian P. Blair
Abstract Mutations in the optineurin gene (OPTN) have been identified in a small proportion (<1%) of sporadic and familial ALS cases, and the exact role of optineurin in the pathogenesis of ALS remains unclear. To further examine the role of OPTN in ALS, we sought to identify novel ALS variants in OPTN and examine their potential for pathogenicity in vitro. Whole exome sequence data from 74 familial ALS cases were analysed for the presence of novel OPTN mutations. Pathogenicity was assessed by analysing effects on Golgi fragmentation, endoplasmic reticulum (ER) stress-linked CHOP activation, and cellular localization of optineurin in motor neuron-like NSC-34 cells expressing mutant optineurin. We identified a novel heterozygous missense mutation in OPTN (c.883G > T, p.Val295Phe) in a single familial ALS case. This mutation induced recognized cellular features of ALS pathogenesis including Golgi fragmentation and ER stress in NSC-34 cells. In conclusion, the identification of a novel OPTN mutation in an Australian ALS family, and its capacity to induce ALS-like pathological features in vitro, further strengthens evidence for the role of optineurin in the pathogenesis of ALS.
Cellular and Molecular Life Sciences | 2018
Albert Lee; Stephanie L. Rayner; Serene S. L. Gwee; Alana De Luca; Hamideh Shahheydari; Vinod Sundaramoorthy; Audrey Ragagnin; Marco Morsch; Rowan Radford; Jasmin Galper; Sarah Freckleton; Bingyang Shi; Adam K. Walker; Emily K. Don; Nicholas J. Cole; Shu Yang; Kelly L. Williams; Justin J. Yerbury; Ian P. Blair; Julie D. Atkin; Mark P. Molloy; Roger S. Chung
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are fatal neurodegenerative disorders that have common molecular and pathogenic characteristics, such as aberrant accumulation and ubiquitylation of TDP-43; however, the mechanisms that drive this process remain poorly understood. We have recently identified CCNF mutations in familial and sporadic ALS and FTD patients. CCNF encodes cyclin F, a component of an E3 ubiquitin–protein ligase (SCFcyclin F) complex that is responsible for ubiquitylating proteins for degradation by the ubiquitin–proteasome system. In this study, we examined the ALS/FTD-causing p.Ser621Gly (p.S621G) mutation in cyclin F and its effect upon downstream Lys48-specific ubiquitylation in transfected Neuro-2A and SH-SY5Y cells. Expression of mutant cyclin FS621G caused increased Lys48-specific ubiquitylation of proteins in neuronal cells compared to cyclin FWT. Proteomic analysis of immunoprecipitated Lys48-ubiquitylated proteins from mutant cyclin FS621G-expressing cells identified proteins that clustered within the autophagy pathway, including sequestosome-1 (p62/SQSTM1), heat shock proteins, and chaperonin complex components. Examination of autophagy markers p62, LC3, and lysosome-associated membrane protein 2 (Lamp2) in cells expressing mutant cyclin FS621G revealed defects in the autophagy pathway specifically resulting in impairment in autophagosomal–lysosome fusion. This finding highlights a potential mechanism by which cyclin F interacts with p62, the receptor responsible for transporting ubiquitylated substrates for autophagic degradation. These findings demonstrate that ALS/FTD-causing mutant cyclin FS621G disrupts Lys48-specific ubiquitylation, leading to accumulation of substrates and defects in the autophagic machinery. This study also demonstrates that a single missense mutation in cyclin F causes hyper-ubiquitylation of proteins that can indirectly impair the autophagy degradation pathway, which is implicated in ALS pathogenesis.