Vinodkumar B. Pillai
University of Chicago
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vinodkumar B. Pillai.
Molecular and Cellular Biology | 2008
Nagalingam R. Sundaresan; Sadhana Samant; Vinodkumar B. Pillai; Senthilkumar B. Rajamohan; Mahesh P. Gupta
ABSTRACT There are seven SIRT isoforms in mammals, with diverse biological functions including gene regulation, metabolism, and apoptosis. Among them, SIRT3 is the only sirtuin whose increased expression has been shown to correlate with an extended life span in humans. In this study, we examined the role of SIRT3 in murine cardiomyocytes. We found that SIRT3 is a stress-responsive deacetylase and that its increased expression protects myocytes from genotoxic and oxidative stress-mediated cell death. We show that, like human SIRT3, mouse SIRT3 is expressed in two forms, a ∼44-kDa long form and a ∼28-kDa short form. Whereas the long form is localized in the mitochondria, nucleus, and cytoplasm, the short form is localized exclusively in the mitochondria of cardiomyocytes. During stress, SIRT3 levels are increased not only in mitochondria but also in the nuclei of cardiomyocytes. We also identified Ku70 as a new target of SIRT3. SIRT3 physically binds to Ku70 and deacetylates it, and this promotes interaction of Ku70 with the proapoptotic protein Bax. Thus, under stress conditions, increased expression of SIRT3 protects cardiomyocytes, in part by hindering the translocation of Bax to mitochondria. These studies underscore an essential role of SIRT3 in the survival of cardiomyocytes in stress situations.
Journal of Biological Chemistry | 2010
Vinodkumar B. Pillai; Nagalingam R. Sundaresan; G. Kim; Madhu Gupta; Senthilkumar B. Rajamohan; Jyothish B. Pillai; Sadhana Samant; P. V. Ravindra; Ayman Isbatan; Mahesh P. Gupta
Since the discovery of NAD-dependent deacetylases, sirtuins, it has been recognized that maintaining intracellular levels of NAD is crucial for the management of stress response of cells. Here we show that agonist-induced cardiac hypertrophy is associated with loss of intracellular levels of NAD, but not exercise-induced physiologic hypertrophy. Exogenous addition of NAD was capable of maintaining intracellular levels of NAD and blocking the agonist-induced cardiac hypertrophic response in vitro as well as in vivo. NAD treatment blocked the activation of pro-hypertrophic Akt1 signaling, and augmented the activity of anti-hypertrophic LKB1-AMPK signaling in the heart, which prevented subsequent induction of mTOR-mediated protein synthesis. By using gene knock-out and transgenic mouse models of SIRT3 and SIRT1, we showed that the anti-hypertrophic effects of exogenous NAD are mediated through activation of SIRT3, but not SIRT1. SIRT3 deacetylates and activates LKB1, thus augmenting the activity of the LKB1-AMPK pathway. These results reveal a novel role of NAD as an inhibitor of cardiac hypertrophic signaling, and suggest that prevention of NAD depletion may be critical in the treatment of cardiac hypertrophy and heart failure.
Nature Medicine | 2012
Nagalingam R. Sundaresan; Prabhakaran Vasudevan; Lei Zhong; G. Kim; Sadhana Samant; Vishwas Parekh; Vinodkumar B. Pillai; P. V. Ravindra; Madhu Gupta; Valluvan Jeevanandam; John M. Cunningham; Chu-Xia Deng; David B. Lombard; Raul Mostoslavsky; Mahesh P. Gupta
Abnormal activation of insulin-like growth factor (IGF)-Akt signaling is implicated in the development of various diseases, including heart failure. However, the molecular mechanisms that regulate activation of this signaling pathway are not completely understood. Here we show that sirtuin 6 (SIRT6), a nuclear histone deacetylase, functions at the level of chromatin to directly attenuate IGF-Akt signaling. SIRT6-deficient mice developed cardiac hypertrophy and heart failure, whereas SIRT6 transgenic mice were protected from hypertrophic stimuli, indicating that SIRT6 acts as a negative regulator of cardiac hypertrophy. SIRT6-deficient mouse hearts showed hyperactivation of IGF signaling–related genes and their downstream targets. Mechanistically, SIRT6 binds to and suppresses the promoter of IGF signaling–related genes by interacting with c-Jun and deacetylating histone 3 at Lys9 (H3K9). We also found reduced SIRT6 expression in human failing hearts. These findings disclose a new link between SIRT6 and IGF-Akt signaling and implicate SIRT6 in the development of cardiac hypertrophy and failure.
Molecular and Cellular Biology | 2009
Senthilkumar B. Rajamohan; Vinodkumar B. Pillai; Madhu Gupta; Nagalingam R. Sundaresan; Konstantin G. Birukov; Sadhana Samant; Michael O. Hottiger; Mahesh P. Gupta
ABSTRACT Poly(ADP-ribose) polymerase 1 (PARP1) and SIRT1 deacetylase are two NAD-dependent enzymes which play major roles in the decision of a cell to live or to die in a stress situation. Because of the dependence of both enzymes on NAD, cross talk between them has been suggested. Here, we show that PARP1 is acetylated after stress of cardiomyocytes, resulting in the activation of PARP1, which is independent of DNA damage. SIRT1 physically binds to and deacetylates PARP1. Increased acetylation of PARP1 was also detected in hearts of SIRT1−/− mice, compared to that detected in the hearts of SIRT1+/+ mice, confirming a role of SIRT1 in regulating the PARP1 acetylation in vivo. SIRT1-dependent deacetylation blocks PARP1 activity, and it protects cells from PARP1-mediated cell death. We also show that SIRT1 negatively regulates the activity of the PARP1 gene promoter, thus suggesting that the deacetylase controls the PARP1 activity at the transcriptional level as well. These data demonstrate that the activity of PARP1 is under the control of SIRT1, which is necessary for survival of cells under stress conditions.
Science Signaling | 2011
Nagalingam R. Sundaresan; Vinodkumar B. Pillai; Don Wolfgeher; Sadhana Samant; Prabhakaran Vasudevan; Vishwas Parekh; H. Raghuraman; John M. Cunningham; Madhu Gupta; Mahesh P. Gupta
Deacetylation of Akt and its activating kinase PDK1 promotes cell growth in physiological and pathological settings. Deacetylation for Activation Cell growth can be physiological (such as when heart cells expand in size in response to exercise, a process called cardiac hypertrophy) or pathological (such as in cancer) and is promoted by the kinase Akt. Sundaresan et al. showed that acetylation blocked the activity of Akt and its activating kinase PDK1 by interfering with the lipid-binding sites of these proteins, whereas deacetylation enhanced their activities. Mice injected with cells containing a mutant Akt that mimicked acetylated Akt formed smaller tumors, and the extent of cardiac hypertrophy was decreased in mice that lacked SIRT1, the protein that deacetylated Akt. These results provide insight into understanding the mechanisms that regulate the activity of Akt and may enable the development of new ways to promote or inhibit cell growth. Signaling through the kinase Akt regulates many biological functions. Akt is activated during growth factor stimulation through a process that requires binding of Akt to phosphatidylinositol 3,4,5-trisphosphate (PIP3), which promotes membrane localization and phosphorylation of Akt by the upstream kinase PDK1 (phosphoinositide-dependent protein kinase 1). We show that Akt and PDK1 are acetylated at lysine residues in their pleckstrin homology domains, which mediate PIP3 binding. Acetylation blocked binding of Akt and PDK1 to PIP3, thereby preventing membrane localization and phosphorylation of Akt. Deacetylation by SIRT1 enhanced binding of Akt and PDK1 to PIP3 and promoted their activation. Mice injected with cells expressing a mutant that mimicked a constitutively acetylated form of Akt developed smaller tumors than those injected with cells expressing wild-type Akt. Furthermore, impaired Akt activation in the hearts of SIRT1-deficient mice was associated with reduced cardiac hypertrophy in response to physical exercise and angiotensin II. These findings uncover a key posttranslational modification of Akt that is important for its oncogenic and hypertrophic activities.
Molecular and Cellular Biology | 2014
Sadhana Samant; Hannah J. Zhang; Zhigang Hong; Vinodkumar B. Pillai; Nagalingam R. Sundaresan; Donald Wolfgeher; Stephen L. Archer; David C. Chan; Mahesh P. Gupta
ABSTRACT Mitochondrial morphology is regulated by the balance between two counteracting mitochondrial processes of fusion and fission. There is significant evidence suggesting a stringent association between morphology and bioenergetics of mitochondria. Morphological alterations in mitochondria are linked to several pathological disorders, including cardiovascular diseases. The consequences of stress-induced acetylation of mitochondrial proteins on the organelle morphology remain largely unexplored. Here we report that OPA1, a mitochondrial fusion protein, was hyperacetylated in hearts under pathological stress and this posttranslational modification reduced the GTPase activity of the protein. The mitochondrial deacetylase SIRT3 was capable of deacetylating OPA1 and elevating its GTPase activity. Mass spectrometry and mutagenesis analyses indicated that in SIRT3-deficient cells OPA1 was acetylated at lysine 926 and 931 residues. Overexpression of a deacetylation-mimetic version of OPA1 recovered the mitochondrial functions of OPA1-null cells, thus demonstrating the functional significance of K926/931 acetylation in regulating OPA1 activity. Moreover, SIRT3-dependent activation of OPA1 contributed to the preservation of mitochondrial networking and protection of cardiomyocytes from doxorubicin-mediated cell death. In summary, these data indicated that SIRT3 promotes mitochondrial function not only by regulating activity of metabolic enzymes, as previously reported, but also by regulating mitochondrial dynamics by targeting OPA1.
Nature Communications | 2015
Vinodkumar B. Pillai; Sadhana Samant; Nagalingam R. Sundaresan; H. Raghuraman; G. Kim; Michael Y. Bonner; Jack L. Arbiser; Douglas I. Walker; Dean P. Jones; David Gius; Mahesh P. Gupta
Honokiol (HKL) is a natural biphenolic compound derived from the bark of magnolia trees with anti-inflammatory, anti-oxidative, anti-tumor and neuroprotective properties. Here we show that HKL blocks agonist-induced and pressure overload-mediated, cardiac hypertrophic responses, and ameliorates pre-existing cardiac hypertrophy, in mice. Our data suggest that the anti-hypertrophic effects of HKL depend on activation of the deacetylase SIRT3. We demonstrate that HKL is present in mitochondria, enhances SIRT3 expression nearly two-fold and suggest that HKL may bind to SIRT3 to further increase its activity. Increased SIRT3 activity is associated with reduced acetylation of mitochondrial SIRT3 substrates, MnSOD and OSCP. HKL-treatment increases mitochondrial rate of oxygen consumption and reduces ROS synthesis in wild-type, but not in SIRT3-KO cells. Moreover, HKL-treatment blocks cardiac fibroblast proliferation and differentiation to myofibroblasts in SIRT3-dependent manner. These results suggest that HKL is a pharmacological activator of SIRT3 capable of blocking, and even reversing, the cardiac hypertrophic response.
Circulation Research | 2014
Vinodkumar B. Pillai; Nagalingam R. Sundaresan; Mahesh P. Gupta
Cardiac hypertrophy is a multifactorial disease characterized by multiple molecular alterations. One of these alterations is change in the activity of Akt, which plays a central role in regulating a variety of cellular processes ranging from cell survival to aging. Akt activation is mainly achieved by its binding to phosphatidylinositol (3,4,5)-triphosphate. This results in a conformational change that exposes the kinase domain of Akt for phosphorylation and activation by its upstream kinase, 3-phosphoinositide-dependent protein kinase 1, in the cell membrane. Recent studies have shown that sirtuin isoforms, silent information regulator (SIRT) 1, SIRT3, and SIRT6, play an essential role in the regulation of Akt activation. Although SIRT1 deacetylates Akt to promote phosphatidylinositol (3,4,5)-triphosphate binding and activation, SIRT3 controls reactive oxygen species-mediated Akt activation, and SIRT6 transcriptionally represses Akt at the level of chromatin. In the first part of this review, we discuss the mechanisms by which sirtuins regulate Akt activation and how they influence other post-translational modifications of Akt. In the latter part of the review, we summarize the implications of sirtuin-dependent regulation of Akt signaling in the control of major cellular processes such as cellular growth, angiogenesis, apoptosis, autophagy, and aging, which are involved in the initiation and progression of several diseases.
Cardiovascular Research | 2010
Vinodkumar B. Pillai; Nagalingam R. Sundaresan; Valluvan Jeevanandam; Mahesh P. Gupta
Sirtuins are emerging as key regulators of many cellular functions including metabolism, cell growth, apoptosis, and genetic control of ageing. In mammals there are seven sirtuin analogues, SIRT1 to SIRT7. Among them SIRT3 is unique because this is the only analogue whose increased expression has been found to be associated with extended lifespan of humans. SIRT3 levels have been shown to be elevated by exercise and calorie restriction. Although the role of SIRT3 in cell biology is only beginning to be understood, initial studies have shown that SIRT3 plays a major role in free fatty acid oxidation and maintenance of cellular ATP levels. In the heart SIRT3 has been found to block development of cardiac hypertrophy and protect cardiomyocytes from oxidative stress-mediated cell death. Similarly, SIRT3 has been reported to have tumour-suppressive characteristics. In this article, we review the known effects of SIRT3 in different tissues and relate them to the protection of cardiomyocytes under stress.
Molecular and Cellular Biology | 2016
Nagalingam R. Sundaresan; Samik Bindu; Vinodkumar B. Pillai; Sadhana Samant; Yong Pan; Jing-Yi Huang; Madhu Gupta; Raghu S. Nagalingam; Don Wolfgeher; Eric Verdin; Mahesh P. Gupta
ABSTRACT Tissue fibrosis is a major cause of organ dysfunction during chronic diseases and aging. A critical step in this process is transforming growth factor β1 (TGF-β1)-mediated transformation of fibroblasts into myofibroblasts, cells capable of synthesizing extracellular matrix. Here, we show that SIRT3 controls transformation of fibroblasts into myofibroblasts via suppressing the profibrotic TGF-β1 signaling. We found that Sirt3 knockout (KO) mice with age develop tissue fibrosis of multiple organs, including heart, liver, kidney, and lungs but not whole-body SIRT3-overexpressing mice. SIRT3 deficiency caused induction of TGF-β1 expression and hyperacetylation of glycogen synthase kinase 3β (GSK3β) at residue K15, which negatively regulated GSK3β activity to phosphorylate the substrates Smad3 and β-catenin. Reduced phosphorylation led to stabilization and activation of these transcription factors regulating expression of the profibrotic genes. SIRT3 deacetylated and activated GSK3β and thereby blocked TGF-β1 signaling and tissue fibrosis. These data reveal a new role of SIRT3 to negatively regulate aging-associated tissue fibrosis and discloses a novel phosphorylation-independent mechanism controlling the catalytic activity of GSK3β.