Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vinoy Thomas is active.

Publication


Featured researches published by Vinoy Thomas.


Acta Biomaterialia | 2009

Aligned PLGA/HA nanofibrous nanocomposite scaffolds for bone tissue engineering.

Moncy V. Jose; Vinoy Thomas; Kalonda T. Johnson; Derrick Dean; Elijah Nyairo

Aligned nanofibrous scaffolds based on poly(d,l-lactide-co-glycolide) (PLGA) and nano-hydroxyapatite (nano-HA) were synthesized by electrospinning for bone tissue engineering. Morphological characterization using scanning electron microscopy showed that the addition of different amounts of nano-HA (1, 5, 10 and 20wt.%) increased the average fiber diameter from 300nm (neat PLGA) to 700nm (20% nano-HA). At higher concentrations (>or=10%), agglomeration of HA was observed and this had a marked effect at 20% concentration whereby the presence of nano-HA resulted in fiber breaking. Thermal characterization showed that the fast processing of electrospinning locked in the amorphous character of PLGA; this resulted in a decrease in the glass transition temperature of the scaffolds. Furthermore, an increase in the glass transition temperature was observed with increasing nano-HA concentration. The dynamic mechanical behavior of the scaffolds reflected the morphological observation, whereby nano-HA acted as reinforcements at lower concentrations (1% and 5%) but acted as defects at higher concentrations (10% and 20%). The storage modulus value of the scaffolds increased from 441MPa for neat PLGA to 724MPa for 5% nano-HA; however, further increasing the concentration leads to a decrease in storage modulus, to 371MPa for 20% nano-HA. Degradation characteristics showed that hydrophilic nano-HA influenced phosphate-buffered saline uptake and mass loss. The mechanical behavior showed a sinusoidal trend with a slight decrease in modulus by week 1 due to the plasticizing effect of the medium followed by an increase due to shrinkage, and a subsequent drop by week 6 due to degradation.


Journal of Biomaterials Science-polymer Edition | 2006

Mechano-morphological studies of aligned nanofibrous scaffolds of polycaprolactone fabricated by electrospinning

Vinoy Thomas; Moncy V. Jose; Shafiul Chowdhury; Jonathan F. Sullivan; Derrick Dean; Yogesh K. Vohra

Mechanical and morphological studies of aligned nanofibrous meshes of poly(ε-caprolactone) (PCL) fabricated by electrospinning at different collector rotation speeds (0, 3000 and 6000 rpm) for application as bone tissue scaffolds are reported. SEM, XRD and DSC analyses were used for the morphological characterization of the nanofibers. Scaffolds have a nanofibrous morphology with fibers (majority) having a diameter in the range of 550–350 nm (depending on fiber uptake rates) and an interconnected pore structure. With the increase of collector rotation speed, the nanofibers become more aligned and oriented perpendicular to the axis of rotation. Deposition of fibers at higher fiber collection speeds has a profound effect on the morphology and mechanical properties of individual fibers and also the bulk fibrous meshes. Nanoindentation was used for the measurement of nanoscopic mechanical properties of individual fibers of the scaffolds. The hardness and Youngs modulus of aligned fibers measured by nanoindentation decreased with collector rotation speeds. This reveals the difference in the local microscopic structure of the fibers deposited at higher speeds. The sequence of nanoscopic mechanical properties (hardness and modulus) of three fibers is PCL at 0 rpm > PCL at 3000 rpm > PCL at 6000 rpm. This may be explained due to the decrease in crystallinity of fibers at higher uptake rates. However, uni-axial tensile properties of (bulk) scaffolds (tensile strength and modulus) increased with increasing collector rotation speed. The average ultimate tensile strength of scaffolds (along the fiber alignment) increased from 2.21 ± 0.23 MPa for PCL at uptake rate of zero rpm, to a value of 4.21 ± 0.35 MPa for PCL at uptake rate of 3000 rpm and finally to 9.58 ± 0.71 MPa for PCL at 6000 rpm. Similarly, the tensile modulus increased gradually from 6.12 ± 0.8 MPa for PCL at uptake rate of zero rpm, to 11.93 ± 1.22 MPa for PCL at uptake rate of 3000 rpm and to 33.20 ± 1.98 MPa for PCL at 6000 rpm. The sequence of macroscopic mechanical properties (tensile strength and modulus) of three fibers, from highest to lowest, is PCL at 0 rpm < PCL at 3000 rpm < PCL at 6000 rpm. This is attributed to the increased fiber alignment and packing and decrease in inter-fiber pore size at higher uptake rates.


Acta Biomaterialia | 2011

A novel spatially designed and functionally graded electrospun membrane for periodontal regeneration

Marco C. Bottino; Vinoy Thomas; Gregg M. Janowski

A periodontal membrane with a graded structure allows tailoring of the layer properties to design a material system that will retain its physical, chemical and mechanical characteristics for a period long enough to optimize periodontal regeneration. In this work a novel functionally graded membrane (FGM) was designed and fabricated via sequential multilayer electrospinning. The FGM consists of a core layer (CL) and two functional surface layers (SLs) interfacing with bone (nano-hydroxyapatite, n-HAp) and epithelial (metronidazole, MET) tissues. The CL comprises a neat poly(DL-lactide-co-ε-caprolactone) (PLCL) layer surrounded by two composite layers composed of a protein/polymer ternary blend (PLCL:PLA:GEL). Electrospinning parameters involved in fabrication of the individual layers (i.e. neat PLCL, ternary blend, PLA:GEL+10%n-HAp and PLA:GEL+25%MET) were optimized to obtain fibrous layers free of beads. Morphology, structure and mechanical property studies were carried out on each electrospun layer. The individual fiber morphology and roughness of the functional SLs, which are the n-HAp containing and drug-incorporating layers were evaluated by atomic force microscopy. The CL structure demonstrated higher strength (8.7 MPa) and a more elastic behavior (strain at break 357%) compared with the FGM (3.5 MPa, 297%). Incorporation of n-HAp to enhance osteoconductive behavior and MET to combat periodontal pathogens led to a novel FGM that holds promise at solving the drawbacks of currently available membranes.


Biomedical Materials | 2007

Functionally graded electrospun scaffolds with tunable mechanical properties for vascular tissue regeneration

Vinoy Thomas; Xing Zhang; Shane A. Catledge; Yogesh K. Vohra

Electrospun tubular scaffolds (4 mm inner diameter) based on bio-artificial blends of polyglyconate (Maxon) and proteins such as gelatin and elastin having a spatially designed multilayer structure were prepared for use as vascular tissue scaffolds. Scanning electron microscopy analysis of scaffolds showed a random nanofibrous morphology with fiber diameter in the range of 200-400 nm for protein-blended Maxon, which mimics the nanoscale dimensions of collagen (50-500 nm). The scaffolds have a well interconnected pore structure and porosity up to 82%, with protein blending and multi-layering in contrast to electrospun Maxon scaffolds (67%). Fourier-transform infrared spectroscopy, x-ray diffraction and differential scanning calorimetry results confirmed the blended composition and crystallinity of fibers. Uniaxial tensile testing revealed a strength of 14.46 +/- 0.42 MPa and a modulus of 15.44 +/- 2.53 MPa with a failure strain of 322.5 +/- 10% for a pure Maxon scaffold. The blending of polyglyconate with biopolymers decreased the tensile properties in general, with an exception of the tensile modulus (48.38 +/- 2 MPa) of gelatin/Maxon mesh, which was higher than that of the pure Maxon scaffold. Trilayered tubular scaffolds of gelatin/elastin, gelatin/elastin/Maxon and gelatin/Maxon (GE-GEM-GM) that mimic the complex trilayer matrix structure of natural artery have been prepared by sequential electrospinning. Tensile testing under dry conditions revealed a tensile strength of 2.71 +/- 0.2 MPa and a modulus of 20.4 +/- 3 MPa with a failure strain of 140 +/- 10%. However, GE-GEM-GM scaffolds tested under wet conditions after soaking in a phosphate buffered saline medium at 37 degrees C for 24 h exhibited mechanical properties (2.5 MPa tensile strength and 9 MPa tensile modulus) comparable to those of native femoral artery.


Biomaterials | 2010

An in vitro regenerated functional human endothelium on a nanofibrous electrospun scaffold.

Xing Zhang; Vinoy Thomas; Yuanyuan Xu; Susan L. Bellis; Yogesh K. Vohra

The capacity of the luminal layer of an electrospun bi-layer scaffold composed of gelatin, elastin, polycaprolactone (PCL), and poliglecaprone (PGC) to promote endothelial regeneration was investigated using human aortic endothelial cells (HAECs). HAECs of different densities were cultured on a thin film of the luminal layer of the scaffold mounted on a cell crown for desired periods. Fluorescent images showed that HAECs formed a mono-layer within 24 h after having successfully adhered to the scaffolds surface. Scanning electron microscopy (SEM) revealed a satisfactory coverage by the HAECs. Death rates of HAECs populations determined by fluorescent staining were below 5% within the initial 3 days while the profile of proliferation exhibited an exponential increase within 11 days as determined by the 3-[4,5-dimethyl(thiazol-2yl)-3,5-diphery] tetrazolium bromide (MTT) assay. The functionalities of the endothelial mono-layer were probed by ZO-1 staining for tight junction formation, by 6-keto-PGF(1alpha) assay for prostacyclin (PGI(2)) secretion, and by human platelets for its anti-thrombotic capability. The results indicated that the regenerated endothelium possessed normal functions associated with native endothelium. This study suggests that this electrospun bi-layer scaffold is a promising candidate for cardiovascular grafting for its capability of promoting the regeneration of a functional endothelium to prevent blood clotting in small diameter grafts.


Biotechnology and Bioengineering | 2009

A biomimetic tubular scaffold with spatially designed nanofibers of protein/PDS bio-blends.

Vinoy Thomas; Xing Zhang; Yogesh K. Vohra

Electrospun tubular conduit (4 mm inner diameter) based on blends of polydioxanone (PDS II®) and proteins such as gelatin and elastin having a spatially designed trilayer structure was prepared for arterial scaffolds. SEM analysis of scaffolds showed random nanofibrous morphology and well‐interconnected pore network. Due to protein blending, the fiber diameter was reduced from 800–950 nm range to 300–500 nm range. Fourier‐transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) results confirmed the blended composition and crystallinity of fibers. Pure PDS scaffold under hydrated state exhibited a tensile strength of 5.61 ± 0.42 MPa and a modulus of 17.11 ± 1.13 MPa with a failure strain of 216.7 ± 13%. The blending of PDS with elastin and gelatin has decreased the tensile properties. A trilayer tubular scaffold was fabricated by sequential electrospinning of blends of elastin/gelatin, PDS/elastin/gelatin, and PDS/gelatin (EG/PEG/PG) to mimic the complex matrix structure of native arteries. Under hydrated state, the trilayer conduit exhibited tensile properties (tensile strength of 1.77 ± 0.2 MPa and elastic modulus of 5.74 ± 3 MPa with a failure strain of 75.08 ± 10%) comparable to those of native arteries. In vitro degradation studies for up to 30 days showed about 40% mass loss and increase in crystallinity due to the removal of proteins and “cleavage‐induced crystallization” of PDS. Biotechnol. Bioeng. 2009; 104: 1025–1033.


PLOS ONE | 2011

Mesenchymal stem cell responses to bone-mimetic electrospun matrices composed of polycaprolactone, collagen I and nanoparticulate hydroxyapatite.

Matthew C. Phipps; William C. Clem; Shane A. Catledge; Yuanyuan Xu; Kristin M. Hennessy; Vinoy Thomas; Michael J. Jablonsky; Shafiul Chowdhury; Andrei Stanishevsky; Yogesh K. Vohra; Susan L. Bellis

The performance of biomaterials designed for bone repair depends, in part, on the ability of the material to support the adhesion and survival of mesenchymal stem cells (MSCs). In this study, a nanofibrous bone-mimicking scaffold was electrospun from a mixture of polycaprolactone (PCL), collagen I, and hydroxyapatite (HA) nanoparticles with a dry weight ratio of 50/30/20 respectively (PCL/col/HA). The cytocompatibility of this tri-component scaffold was compared with three other scaffold formulations: 100% PCL (PCL), 100% collagen I (col), and a bi-component scaffold containing 80% PCL/20% HA (PCL/HA). Scanning electron microscopy, fluorescent live cell imaging, and MTS assays showed that MSCs adhered to the PCL, PCL/HA and PCL/col/HA scaffolds, however more rapid cell spreading and significantly greater cell proliferation was observed for MSCs on the tri-component bone-mimetic scaffolds. In contrast, the col scaffolds did not support cell spreading or survival, possibly due to the low tensile modulus of this material. PCL/col/HA scaffolds adsorbed a substantially greater quantity of the adhesive proteins, fibronectin and vitronectin, than PCL or PCL/HA following in vitro exposure to serum, or placement into rat tibiae, which may have contributed to the favorable cell responses to the tri-component substrates. In addition, cells seeded onto PCL/col/HA scaffolds showed markedly increased levels of phosphorylated FAK, a marker of integrin activation and a signaling molecule known to be important for directing cell survival and osteoblastic differentiation. Collectively these results suggest that electrospun bone-mimetic matrices serve as promising degradable substrates for bone regenerative applications.


Macromolecular Bioscience | 2010

Aligned bioactive multi-component nanofibrous nanocomposite scaffolds for bone tissue engineering.

Moncy V. Jose; Vinoy Thomas; Yuanyuan Xu; Susan L. Bellis; Elijah Nyairo; Derrick Dean

The ability to mimic the chemical, physical and mechanical properties of the natural extra-cellular matrix is a key requirement for tissue engineering scaffolds to be successful. In this study, we successfully fabricated aligned nanofibrous multi-component scaffolds for bone tissue engineering using electrospinning. The chemical features were mimicked by using the natural components of bone: collagen and nano-hydroxyapatite along with poly[(D,L-lactide)-co-glycolide] as the major component. Anisotropic features were mimicked by aligning the nanofibers using a rotating mandrel collector. We evaluated the effect of incorporation of nano-HA particles to the system. The morphology and mechanical properties revealed that,at low concentrations, nano-HA acted as a reinforcement. However, at higher nano-HA loadings, it was difficult to disrupt aggregations and, hence, a detrimental effect was observed on the overall scaffold properties. Thermal analysis showed that there were slight interactions between the individual components even though the polymers existed as a two-phase system. Preliminary in vitro cell-culture studies revealed that the scaffold supported cell adhesion and spreading. The cells assumed a highly aligned morphology along the direction of fiber orientation. Protein adsorption experiments revealed that the synergistic effect of increased surface area and the presence of nano-HA in the polymer matrix enhanced total protein adsorption. Crosslinking with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride resulted in improved mechanical properties of the scaffolds and improved degradation stability, under physiological conditions.


Acta Biomaterialia | 2012

In vitro studies on the effect of particle size on macrophage responses to nanodiamond wear debris.

Vinoy Thomas; Brian Halloran; Namasivayam Ambalavanan; Shane A. Catledge; Yogesh K. Vohra

Nanostructured diamond coatings improve the smoothness and wear characteristics of the metallic component of total hip replacements and increase the longevity of these implants, but the effect of nanodiamond wear debris on macrophages needs to be determined to estimate the long-term inflammatory effects of wear debris. The objective was to investigate the effect of the size of synthetic nanodiamond particles on macrophage proliferation (BrdU incorporation), apoptosis (Annexin-V flow cytometry), metabolic activity (WST-1 assay) and inflammatory cytokine production (qPCR). RAW 264.7 macrophages were exposed to varying sizes (6, 60, 100, 250 and 500 nm) and concentrations (0, 10, 50, 100 and 200 μg ml(-1)) of synthetic nanodiamonds. We observed that cell proliferation but not metabolic activity was decreased with nanoparticle sizes of 6-100 nm at lower concentrations (50 μg ml(-1)), and both cell proliferation and metabolic activity were significantly reduced with nanodiamond concentrations of 200 μg ml(-1). Flow cytometry indicated a significant reduction in cell viability due to necrosis irrespective of particle size. Nanodiamond exposure significantly reduced gene expression of tumor necrosis factor-α, interleukin-1β, chemokine Ccl2 and platelet-derived growth factor compared to serum-only controls or titanium oxide (anatase 8 nm) nanoparticles, with variable effects on chemokine Cxcl2 and vascular endothelial growth factor. In general, our study demonstrates a size and concentration dependence of macrophage responses in vitro to nanodiamond particles as possible wear debris from diamond-coated orthopedic joint implants.


Journal of Biomedical Materials Research Part B | 2009

In vitro biodegradation of designed tubular scaffolds of electrospun protein/polyglyconate blend fibers

Xing Zhang; Vinoy Thomas; Yogesh K. Vohra

Electrospun polyglyconate (Maxon) and its blends with proteins such as gelatin and elastin, with a spatially designed layer structure, were prepared as potential scaffolds for vascular tissue engineering. In vitro biodegradation of the electrospun tubular protein/Maxon scaffolds in phosphate buffered saline (pH = 7.3) was studied for the first time. The biodegradation is manifested by uptake of the PBS medium by the hydrophilic proteins and also by the mass loss due to the removal of degraded fragments and uncrosslinked proteins from the matrices. The effect of degradation on the structure-property relations was evaluated by IR, XRD, and DSC analyses of the aged scaffolds. The degradation of amorphous phase of Maxon in the early stages of aging has resulted in an increase in the crystallinity of the polymer. SEM analysis indicated a significant change in nanofiber morphology and fiber-breaking. The mass loss and fiber breaking have negatively impacted the mechanical properties and the effect was maximum at 15-20 days of aging. The scaffold containing low molecular weight buffer soluble elastin revealed relatively better degradation properties compared to that containing high molecular weight buffer insoluble elastin.

Collaboration


Dive into the Vinoy Thomas's collaboration.

Top Co-Authors

Avatar

Yogesh K. Vohra

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Derrick Dean

Alabama State University

View shared research outputs
Top Co-Authors

Avatar

Moncy V. Jose

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Elijah Nyairo

Alabama State University

View shared research outputs
Top Co-Authors

Avatar

Shane A. Catledge

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregg M. Janowski

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Shafiul Chowdhury

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Xing Zhang

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Susan L. Bellis

University of Alabama at Birmingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge