Vinuth N. Puttamallesh
Amrita Vishwa Vidyapeetham
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vinuth N. Puttamallesh.
Journal of Neurochemistry | 2015
Gangadharappa Harish; Anita Mahadevan; Nupur Pruthi; Sreelakshmi K. Sreenivasamurthy; Vinuth N. Puttamallesh; Thottethodi Subrahmanya Keshava Prasad; Susarla K. Shankar; Muchukunte Mukunda Srinivas Bharath
Traumatic brain injury (TBI) contributes to fatalities and neurological disabilities worldwide. While primary injury causes immediate damage, secondary events contribute to long‐term neurological defects. Contusions (Ct) are primary injuries correlated with poor clinical prognosis, and can expand leading to delayed neurological deterioration. Pericontusion (PC) (penumbra), the region surrounding Ct, can also expand with edema, increased intracranial pressure, ischemia, and poor clinical outcome. Analysis of Ct and PC can therefore assist in understanding the pathobiology of TBI and its management. This study on human TBI brains noted extensive neuronal, astroglial and inflammatory changes, alterations in mitochondrial, synaptic and oxidative markers, and associated proteomic profile, with distinct differences in Ct and PC. While Ct displayed petechial hemorrhages, thrombosis, inflammation, neuronal pyknosis, and astrogliosis, PC revealed edema, vacuolation of neuropil, axonal loss, and dystrophic changes. Proteomic analysis demonstrated altered immune response, synaptic, and mitochondrial dysfunction, among others, in Ct, while PC displayed altered regulation of neurogenesis and cytoskeletal architecture, among others. TBI brains displayed oxidative damage, glutathione depletion, mitochondrial dysfunction, and loss of synaptic proteins, with these changes being more profound in Ct. We suggest that analysis of markers specific to Ct and PC may be valuable in the evaluation of TBI pathobiology and therapeutics. We have characterized the primary injury in human traumatic brain injury (TBI). Contusions (Ct) – the injury core displayed hemorrhages, inflammation, and astrogliosis, while the surrounding pericontusion (PC) revealed edema, vacuolation, microglial activation, axonal loss, and dystrophy. Proteomic analysis demonstrated altered immune response, synaptic and mitochondrial dysfunction in Ct, and altered regulation of neurogenesis and cytoskeletal architecture in PC. Ct displayed more oxidative damage, mitochondrial, and synaptic dysfunction compared to PC.
Journal of Proteomics | 2014
Lakshmi Dhevi N. Selvan; Santosh Renuse; Jyothi Embekkat Kaviyil; Jyoti Sharma; Sneha M. Pinto; Soujanya D. Yelamanchi; Vinuth N. Puttamallesh; Raju Ravikumar; Akhilesh Pandey; T. S. Keshava Prasad; H. C. Harsha
UNLABELLED Cryptococcus neoformans is an encapsulated pathogenic yeast, which causes life threatening meningitis in immunocompromised individuals. C. neoformans var. grubii is the most prevalent and virulent form among the two varieties of C. neoformans - C. neoformans var. grubii and C. neoformans var. neoformans. The virulence of C. neoformans is mainly conferred by its capsule and melanin. cAMP dependent PKA-induced phosphorylation events are reported to be associated with the expression of these virulence traits, which highlights the importance of phosphoproteins in virulence and infection. Therefore, we performed global profiling of phosphoproteome of C. neoformans to enable a better understanding of molecular regulation of its virulence and pathogenesis. High resolution mass spectrometry of TiO2 enriched phosphopeptides from C. neoformans var. grubii grown in culture led to the identification of 1089 phosphopeptides derived from 648 proteins including about 45 kinases. Motif enrichment analysis revealed that most CDK family substrates were found to be phosphorylated. This indicates that cyclin-dependent kinases were among the active kinases in the pathogen in culture. These studies provide a framework for understanding virulence mechanisms in the context of signalling pathways in pathogenic yeast. This article is part of a Special Issue entitled: Trends in Microbial Proteomics. BIOLOGICAL SIGNIFICANCE C. neoformans is a pathogenic yeast responsible for cryptococcal meningitis. Melanin and polysaccharide capsule have been established as some of the key virulence factors that play a major role in the pathogenesis of C. neoformans. Recent studies have shown the role of kinase mediated signalling pathways in governing biosynthesis of these virulence factors. This study revealed 1540 phosphorylation sites in 648 proteins providing a comprehensive view of phosphoproteins in C. neoformans. This should serve as a useful resource to explore activated signalling pathways in C. neoformans and their association with its virulence and pathogenesis.
Journal of Proteomics | 2015
Yashwanth Subbannayya; Sartaj Ahmad Mir; Santosh Renuse; Srikanth S. Manda; Sneha M. Pinto; Vinuth N. Puttamallesh; Hitendra S. Solanki; Hc Manju; Nazia Syed; Rakesh Sharma; Rita Christopher; Manavalan Vijayakumar; K.V. Veerendra Kumar; T. S. Keshava Prasad; Girija Ramaswamy; Rekha V. Kumar; Aditi Chatterjee; Akhilesh Pandey; Harsha Gowda
UNLABELLED Gastric adenocarcinoma is an aggressive cancer with poor prognosis. Blood based biomarkers of gastric cancer have the potential to improve diagnosis and monitoring of these tumors. Proteins that show altered levels in the circulation of gastric cancer patients could prove useful as putative biomarkers. We used an iTRAQ-based quantitative proteomic approach to identify proteins that show altered levels in the sera of patients with gastric cancer. Our study resulted in identification of 643 proteins, of which 48 proteins showed increased levels and 11 proteins showed decreased levels in serum from gastric cancer patients compared to age and sex matched healthy controls. Proteins that showed increased expression in gastric cancer included inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4), Mannose-binding protein C (MBL2), sex hormone-binding globulin (SHBG), insulin-like growth factor-binding protein 2 (IGFBP2), serum amyloid A protein (SAA1), Orosomucoid 1 (ORM1) and extracellular superoxide dismutase [Cu-Zn] (SOD3). We used multiple reaction monitoring assays and validated elevated levels of ITIH4 and SAA1 proteins in serum from gastric cancer patients. BIOLOGICAL SIGNIFICANCE Gastric cancer is a highly aggressive cancer associated with high mortality. Serum-based biomarkers are of considerable interest in diagnosis and monitoring of various diseases including cancers. Gastric cancer is often diagnosed at advanced stages resulting in poor prognosis and high mortality. Pathological diagnosis using biopsy specimens remains the gold standard for diagnosis of gastric cancer. Serum-based biomarkers are of considerable importance as they are minimally invasive. In this study, we carried out quantitative proteomic profiling of serum from gastric cancer patients to identify proteins that show altered levels in gastric cancer patients. We identified more than 50 proteins that showed altered levels in gastric cancer patient sera. Validation in a large cohort of well classified patient samples would prove useful in identifying novel blood based biomarkers for gastric cancers. This article is part of a Special Issue entitled: Proteomics in India.
Clinical Proteomics | 2013
Thottethodi Subrahmanya Keshava Prasad; Renu Verma; Satish Kumar; Raja Sekhar Nirujogi; Gajanan Sathe; Jyoti Sharma; Vinuth N. Puttamallesh; Anjali Ganjiwale; Vithal P Myneedu; Aditi Chatterjee; Akhilesh Pandey; H. C. Harsha; Jayasuryan Narayana
BackgroundPurified protein derivative (PPD) has been used for more than half a century as an antigen for the diagnosis of tuberculosis infection based on delayed type hypersensitivity. Although designated as “purified,” in reality, the composition of PPD is highly complex and remains ill-defined. In this report, high resolution mass spectrometry was applied to understand the complexity of its constituent components. A comparative proteomic analysis of various PPD preparations and their functional characterization is likely to help in short-listing the relevant antigens required to prepare a less complex and more potent reagent for diagnostic purposes.ResultsProteomic analysis of Connaught Tuberculin 68 (PPD-CT68), a tuberculin preparation generated from M. tuberculosis, was carried out in this study. PPD-CT68 is the protein component of a commercially available tuberculin preparation, Tubersol, which is used for tuberculin skin testing. Using a high resolution LTQ-Orbitrap Velos mass spectrometer, we identified 265 different proteins. The identified proteins were compared with those identified from PPD M. bovis, PPD M. avium and PPD-S2 from previous mass spectrometry-based studies. In all, 142 proteins were found to be shared between PPD-CT68 and PPD-S2 preparations. Out of the 354 proteins from M. tuberculosis–derived PPDs (i.e. proteins in either PPD-CT68 or PPD-S2), 37 proteins were found to be shared with M. avium PPD and 80 were shared with M. bovis PPD. Alignment of PPD-CT68 proteins with proteins encoded by 24 lung infecting bacteria revealed a number of similar proteins (206 bacterial proteins shared epitopes with 47 PPD-CT68 proteins), which could potentially be involved in causing cross-reactivity. The data have been deposited to the ProteomeXchange with identifier PXD000377.ConclusionsProteomic and bioinformatics analysis of different PPD preparations revealed commonly and differentially represented proteins. This information could help in delineating the relevant antigens represented in various PPDs, which could further lead to development of a lesser complex and better defined skin test antigen with a higher specificity and sensitivity.
Clinical Proteomics | 2014
Lakshmi Dhevi N. Selvan; Jyothi Embekkat Kaviyil; Raja Sekhar Nirujogi; Babylakshmi Muthusamy; Vinuth N. Puttamallesh; Tejaswini Subbannayya; Nazia Syed; Aneesha Radhakrishnan; Dhanashree S. Kelkar; Sartaj Ahmad; Sneha M. Pinto; Praveen Kumar; Bipin G. Nair; Aditi Chatterjee; Akhilesh Pandey; Raju Ravikumar; Harsha Gowda; Thottethodi Subrahmanya Keshava Prasad
BackgroundCryptococcus neoformans, a basidiomycetous fungus of universal occurrence, is a significant opportunistic human pathogen causing meningitis. Owing to an increase in the number of immunosuppressed individuals along with emergence of drug-resistant strains, C. neoformans is gaining importance as a pathogen. Although, whole genome sequencing of three varieties of C. neoformans has been completed recently, no global proteomic studies have yet been reported.ResultsWe performed a comprehensive proteomic analysis of C. neoformans var. grubii (Serotype A), which is the most virulent variety, in order to provide protein-level evidence for computationally predicted gene models and to refine the existing annotations. We confirmed the protein-coding potential of 3,674 genes from a total of 6,980 predicted protein-coding genes. We also identified 4 novel genes and corrected 104 predicted gene models. In addition, our studies led to the correction of translational start site, splice junctions and reading frame used for translation in a number of proteins. Finally, we validated a subset of our novel findings by RT-PCR and sequencing.ConclusionsProteogenomic investigation described here facilitated the validation and refinement of computationally derived gene models in the intron-rich genome of C. neoformans, an important fungal pathogen in humans.
Clinical Proteomics | 2013
Vinuth N. Puttamallesh; Sreelakshmi K. Sreenivasamurthy; Pradeep Kumar Singh; H. C. Harsha; Anjali Ganjiwale; Shobha Broor; Akhilesh Pandey; Jayasuryan Narayana; T. S. Keshava Prasad
BackgroundChikungunya is a highly debilitating febrile illness caused by Chikungunya virus, a single-stranded RNA virus, which is transmitted by Aedes aegypti or Aedes albopictus mosquito species. The pathogenesis and host responses in individuals infected with the chikungunya virus are not well understood at the molecular level. We carried out proteomic profiling of serum samples from chikungunya patients in order to identify molecules associated with the host response to infection by this virus.ResultsProteomic profiling of serum obtained from the infected individuals resulted in identification of 569 proteins. Of these, 63 proteins were found to be differentially expressed (≥ 2-fold) in patient as compared to control sera. These differentially expressed proteins were involved in various processes such as lipid metabolism, immune response, transport, signal transduction and apoptosis.ConclusionsThis is the first report providing a global proteomic profile of serum samples from individuals infected with the chikungunya virus. Our data provide an insight into the proteins that are involved as host response factors during an infection. These proteins include clusterin, apolipoproteins and S100A family of proteins.
Oncotarget | 2016
Remya Raja; Nandini A. Sahasrabuddhe; Aneesha Radhakrishnan; Nazia Syed; Hitendra S. Solanki; Vinuth N. Puttamallesh; Sai A. Balaji; Vishalakshi Nanjappa; Keshava K. Datta; Niraj Babu; Santosh Renuse; Arun H. Patil; Evgeny Izumchenko; T. S. Keshava Prasad; Xiaofei Chang; Annapoorni Rangarajan; David Sidransky; Akhilesh Pandey; Harsha Gowda; Aditi Chatterjee
Epidemiological data clearly establishes cigarette smoking as one of the major cause for lung cancer worldwide. Recently, targeted therapy has become one of the most preferred modes of treatment for cancer. Though certain targeted therapies such as anti-EGFR are in clinical practice, they have shown limited success in lung cancer patients who are smokers. This demands discovery of alternative drug targets through systematic investigation of cigarette smoke-induced signaling mechanisms. To study the signaling events activated in response to cigarette smoke, we carried out SILAC-based phosphoproteomic analysis of H358 lung cancer cells chronically exposed to cigarette smoke. We identified 1,812 phosphosites, of which 278 phosphosites were hyperphosphorylated (≥ 3-fold) in H358 cells chronically exposed to cigarette smoke. Our data revealed hyperphosphorylation of S560 within the conserved kinase domain of PAK6. Activation of PAK6 is associated with various processes in cancer including metastasis. Mechanistic studies revealed that inhibition of PAK6 led to reduction in cell proliferation, migration and invasion of the cigarette smoke treated cells. Further, siRNA mediated silencing of PAK6 resulted in decreased invasive abilities in a panel of non-small cell lung cancer (NSCLC) cells. Consistently, mice bearing tumor xenograft showed reduced tumor growth upon treatment with PF-3758309 (group II PAK inhibitor). Immunohistochemical analysis revealed overexpression of PAK6 in 66.6% (52/78) of NSCLC cases in tissue microarrays. Taken together, our study indicates that PAK6 is a promising novel therapeutic target for NSCLC, especially in smokers.
Scientific Reports | 2016
Aneesha Radhakrishnan; Vishalakshi Nanjappa; Remya Raja; Gajanan Sathe; Vinuth N. Puttamallesh; Ankit P. Jain; Sneha M. Pinto; Sai A. Balaji; Sandip Chavan; Nandini A. Sahasrabuddhe; Premendu P. Mathur; Mahesh Kumar; T. S. Keshava Prasad; Vani Santosh; Geethanjali Sukumar; Joseph A. Califano; Annapoorni Rangarajan; David Sidransky; Akhilesh Pandey; Harsha Gowda; Aditi Chatterjee
Despite advances in clinical management, 5-year survival rate in patients with late-stage head and neck squamous cell carcinoma (HNSCC) has not improved significantly over the past decade. Targeted therapies have emerged as one of the most promising approaches to treat several malignancies. Though tyrosine phosphorylation accounts for a minority of total phosphorylation, it is critical for activation of signaling pathways and plays a significant role in driving cancers. To identify activated tyrosine kinase signaling pathways in HNSCC, we compared the phosphotyrosine profiles of a panel of HNSCC cell lines to a normal oral keratinocyte cell line. Dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A) was one of the kinases hyperphosphorylated at Tyr-321 in all HNSCC cell lines. Inhibition of DYRK1A resulted in an increased apoptosis and decrease in invasion and colony formation ability of HNSCC cell lines. Further, administration of the small molecular inhibitor against DYRK1A in mice bearing HNSCC xenograft tumors induced regression of tumor growth. Immunohistochemical labeling of DYRK1A in primary tumor tissues using tissue microarrays revealed strong to moderate staining of DYRK1A in 97.5% (39/40) of HNSCC tissues analyzed. Taken together our results suggest that DYRK1A could be a novel therapeutic target in HNSCC.
Oncotarget | 2018
Mustafa A. Barbhuiya; Manoj Kumar Kashyap; Vinuth N. Puttamallesh; Rekha V. Kumar; Xinyan Wu; Akhilesh Pandey; Harsha Gowda
The vast majority of esophageal cancers in China, India and Iran are esophageal squamous cell carcinomas (ESCC). A timely diagnosis provides surgical removal as the main therapeutic option for patients with ESCC. Currently, there are no targeted therapies available for ESCC. We carried out reverse phase protein array-based protein expression profiling of seven ESCC-derivedcell lines and a non-neoplastic esophageal epithelial cell line (Het-1A) to identify differentially expressed proteins in ESCC. SYK non-receptortyrosine kinase was overexpressed in six out of seven ESCC cell lines that were used in the study. We evaluated the role of SYK in ESCC using the pharmacological inhibitor entospletinib (GS-9973) and siRNA-based knock down studies. Entospletinib is a selective inhibitor of SYK, which is currently being evaluated in phase II clinical trials for hematological malignancies. Using in vivo subcutaneous tumor xenografts in mice, we demonstrate that treatment with entospletinib significantly inhibits tumor growth. Further clinical studies are needed to prove the efficacy of entospletinib as a targeted therapeutic agent for treating ESCC.
Mitochondrion | 2017
Hitendra S. Solanki; Niraj Babu; Ankit P. Jain; Mohd Younis Bhat; Vinuth N. Puttamallesh; Jayshree Advani; Remya Raja; Kiran K. Mangalaparthi; Mahesh M. Kumar; T. S. Keshava Prasad; Premendu P. Mathur; David Sidransky; Harsha Gowda; Aditi Chatterjee
Cellular transformation owing to cigarette smoking is due to chronic exposure and not acute. However, systematic studies to understand the molecular alterations in lung cells due to cigarette smoke are lacking. To understand these molecular alterations induced by chronic cigarette smoke exposure, we carried out tandem mass tag (TMT) based temporal proteomic profiling of lung cells exposed to cigarette smoke for upto 12months. We identified 2620 proteins in total, of which 671 proteins were differentially expressed (1.5-fold) after 12months of exposure. Prolonged exposure of lung cells to smoke for 12months revealed dysregulation of oxidative phosphorylation and overexpression of enzymes involved in TCA cycle. In addition, we also observed overexpression of enzymes involved in glutamine metabolism, fatty acid degradation and lactate synthesis. This could possibly explain the availability of alternative source of carbon to TCA cycle apart from glycolytic pyruvate. Our data indicates that chronic exposure to cigarette smoke induces mitochondrial metabolic reprogramming in cells to support growth and survival.