Viola Galligioni
University of Bologna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Viola Galligioni.
Antiviral Research | 2011
Gaia Colombo; Luca Lorenzini; Elisa Zironi; Viola Galligioni; Fabio Sonvico; Anna Giulia Balducci; Giampiero Pagliuca; Alessandro Giuliani; Laura Calzà; Alessandra Scagliarini
Ribavirin has proved to be effective in vitro against several RNA viruses responsible for encephalitis in humans and animals. However, the in vivo efficacy towards the cerebral viral load seems to be limited by the blood-brain barrier. Since the nose-to-brain pathway has been indicated for delivering drugs to the brain, we investigated here the distribution of ribavirin in the central nervous system (CNS) after intranasal administration. We first tested in vitro ribavirin diffusion from an aqueous solution across a biological membrane, using Franz cells and rabbit nasal mucosa. About 35% of ribavirin permeated in 4 h across the mucosa, after reaching steady-state flux in less than 30 min. In the first in vivo experiment, ribavirin aqueous solution was administered intranasally to Sprague Dawley rats (10 mg/kg). Animals were sacrificed at 10, 20 or 30 min after administration to collect brain areas (cerebellum, olfactory bulb, cerebral cortex, basal ganglia and hippocampus) and biological fluids (cerebrospinal fluid and plasma). Ribavirin, quantified by LC-MS/MS spectrometry, was detected at each time point in all compartments with the highest concentration in olfactory bulb and decreasing in rostro-caudal direction. Two subsequent in vivo experiments compared the nasal route (ribavirin solution) with the intravenous one and the nasal administration of ribavirin solution with ribavirin powder (10 mg/kg). It was found that 20 min after administration, ribavirin concentration in olfactory bulb was similar after intravenous or nasal administration of the ribavirin solution, whereas the powder led to significantly higher levels. Ribavirin was also present in deeper compartments, such as basal ganglia and hippocampus. Even if the mechanisms involved in ribavirin nose-to-brain transport are not clear, these results suggest a rapid extracellular diffusive flux from the nasal epithelium to the olfactory bulb and different CNS areas.
Antiviral Research | 2011
L. Gallina; Fabiana Dal Pozzo; Viola Galligioni; Ezio Bombardelli; Alessandra Scagliarini
Canine distemper virus (CDV) is a contagious and multisystemic viral disease that affects domestic and wild canines as well as other terrestrial and aquatic carnivores. The disease in dogs is often fatal and no specific antiviral therapy is currently available. In this study, we evaluated the in vitro antiviral activity against CDV of proanthocyanidin A2 (PA2), a phenolic dimer belonging to the class of condensed tannins present in plants. Our results showed that PA2 exerted in vitro antiviral activity against CDV with a higher selectivity index compared to ribavirin, included in our study for the previously tested anti-CDV activity. The time of addition assay led us to observe that PA2 was able to decrease the viral RNA synthesis and to reduce progeny virus liberation, at different times post infection suggesting multiple mechanisms of action including inhibition of viral replicative complex and modulation of the redox milieu. These data suggest that PA2, isolated from the bark of Aesculus hippocastanum, has potential usefulness as an anti-CDV compound inhibiting viral replication.
Research in Veterinary Science | 2010
Fabiana Dal Pozzo; Viola Galligioni; Francesca Vaccari; L. Gallina; Mara Battilani; Alessandra Scagliarini
Canine distemper virus (CDV) is a highly contagious pathogen of carnivores. In dogs, the disease is characterized by high lethality rates and no specific antiviral therapy is available. The aim of this study was to verify the in vitro antiviral activity of the 5-ethynyl-1-beta-d-ribofuranosylimidazole-4-carboxamide (EICAR) and to compare it with the 1-(beta-d-ribofuranosyl)-1,2,4-triazole-3-carboxamide (ribavirin, RBV). EICAR was more active than RBV against CDV replication, while both molecules exhibited low selectivity indexes. A reversal of their antiviral activity was observed after addition of guanosine, suggesting their involvement in the inhibition of the inosine monophosphate dehydrogenase enzyme (IMPDH). RBV and EICAR had a time- and concentration-dependent anti-CDV activity, mainly displayed during the first 10h post-infection. The involvement of the inhibition of the viral RNA-dependent RNA polymerase (vRdRp) is discussed, as well as the role of CDV as a model to study more potent and selective antiviral molecules active against other Paramyxoviridae.
Veterinary Research Communications | 2009
Sara Ciulli; Elena Galletti; Mara Battilani; Viola Galligioni; Santino Prosperi
Analysis of variability and antigenic peptide prediction of E2 BVDV glycoprotein in a mucosal-disease affected animal S. Ciulli & E. Galletti & M. Battilani & V. Galligione & S. Prosperi Published online: 8 July 2009 # Springer Science + Business Media B.V. 2009
Drug Delivery | 2018
Alessandro Giuliani; Anna Giulia Balducci; Elisa Zironi; Gaia Colombo; Fabrizio Bortolotti; Luca Lorenzini; Viola Galligioni; Giampiero Pagliuca; Alessandra Scagliarini; Laura Calzà; Fabio Sonvico
Abstract Nasal administration has been proposed as a potential approach for the delivery of drugs to the central nervous system. Ribavirin (RBV), an antiviral drug potentially useful to treat viral infections both in humans and animals, has been previously demonstrated to attain several brain compartments after nasal administration. Here, a powder formulation in the form of agglomerates comprising micronized RBV and spray-dried microparticles containing excipients with potential absorption enhancing properties, i.e. mannitol, chitosan, and α-cyclodextrin, was developed for nasal insufflation. The agglomerates were characterized for particle size, agglomeration yield, and ex vivo RBV permeation across rabbit nasal mucosa as well as delivery from an animal dry powder insufflator device. Interestingly, permeation enhancers such as chitosan and mannitol showed a lower amount of RBV permeating across the excised nasal tissue, whereas α-cyclodextrin proved to outperform the other formulations and to match the highly soluble micronized RBV powder taken as a reference. In vivo nasal administration to rats of the agglomerates containing α-cyclodextrin showed an overall higher accumulation of RBV in all the brain compartments analyzed as compared with the micronized RBV administered as such without excipient microparticles. Hence, powder agglomerates are a valuable approach to obtain a nasal formulation potentially attaining nose-to-brain delivery of drugs with minimal processing of the APIs and improvement of the technological and biopharmaceutical properties of micronized API and excipients, as they combine optimal flow properties for handling and dosing, suitable particle size for nasal deposition, high surface area for drug dissolution, and penetration enhancing properties from excipients such as cyclodextrins.
African Journal of Traditional, Complementary and Alternative Medicines | 2009
Viola Galligioni; F. Dal Pozzo; G. Fontana; E. Bombardelli; E. Baldelli; Alessandra Scagliarini
Journal of Biotechnology | 2010
Viola Galligioni; E. Caruso; S. Gaeta; Alessandra Scagliarini
Journal of Biotechnology | 2010
Viola Galligioni; F. Dal Pozzo; E. Bombardelli; A. Scagliarini
African Journal of Traditional, Complementary and Alternative Medicines | 2009
Viola Galligioni; F. Vaccari; E. Galletti; R. Matera; G. Fontana; S. Ciulli; A. Scagliarini
7th ESVV Pestivirus Symposium | 2008
Elena Galletti; N. Cinotti; Mara Battilani; Viola Galligioni; Santino Prosperi; Sara Ciulli