Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Violet G. Yuen is active.

Publication


Featured researches published by Violet G. Yuen.


Molecular and Cellular Biochemistry | 2009

The fructose-fed rat: a review on the mechanisms of fructose-induced insulin resistance and hypertension.

Linda T. Tran; Violet G. Yuen; John H. McNeill

The metabolic syndrome is an important public health concern that predisposes individuals to the development of cardiovascular disease and/or Type 2 diabetes. The fructose-fed rat is an animal model of acquired systolic hypertension that displays numerous features of the metabolic syndrome. This animal model is used to study the relationship between insulin resistance/compensatory hyperinsulinemia and the development of hypertension. Several mechanisms have been proposed to mediate the link between insulin resistance and hypertension. In this review, we have addressed the role of sympathetic nervous system overactivation, increased production of vasoconstrictors, such as endothelin-1 and angiotensin II, and prostanoids in the development of hypertension in fructose-fed rats. The roles of nitric oxide, impaired endothelium-dependent relaxation and sex hormones in the pathogenesis of the fructose-fed induced hypertensive rats have also been highlighted. More recently, increased formation of reactive oxygen species and elevated levels of uric acid have been reported to contribute to fructose-induced hypertension.


Journal of Inorganic Biochemistry | 1997

Glucose-lowering properties of vanadium compounds: Comparison of coordination complexes with maltol or kojic acid as ligands

Violet G. Yuen; Peter Caravan; Lucio Gelmini; Nicholas R. Glover; John H. McNeill; Ika A. Setyawati; Ying Zhou; Chris Orvig

Bis(kojato)oxovanadium(IV) [abbreviated VO(ka)2], a close chemical analog of the insulin-mimetic lead compound bis(maltolato)oxovanadium(IV)--abbreviated BMOV or VO(ma)2--is reported and its reaction chemistry and insulin-mimetic properties are presented. VO(ka)2 [log K1 = 7.61(10), log K2 = 6.89(6), log beta 2 = 14.50(16)] has a reaction chemistry which directly parallels that of VO(ma)2. In aqueous solution it is more slowly oxidized by molecular oxygen to [VO2(ka)2]- than is VO(ma)2 to [VO2(ma)2]-. Variable pH electrochemistry and variable pH 51V NMR of solutions of VO(ka)2 are presented and contrasted with the corresponding results for VO(ma)2. Time course studies (24 hr) in STZ-diabetic rats following the oral or i.p. administration of VO(ka)2, VO(ma)2, VO2+ (vanadyl) as vanadyl sulfate (VOSO4), and [VO2(ma)2]- as its [NH4]+ salt have been performed, as have chronic oral studies comparing VO(ka)2 and VO(ma)2 over a six week period. In all studies, the most potent form of vanadium was the neutrally charged, water soluble, complex VO(ma)2.


Cardiovascular Research | 2008

Role of inducible nitric oxide synthase in induction of RhoA expression in hearts from diabetic rats

Hesham Soliman; Graham P. Craig; Prabhakara R. Nagareddy; Violet G. Yuen; Guorong Lin; Ujendra Kumar; John H. McNeill; Kathleen M. MacLeod

AIMS Recent studies from our laboratory demonstrated that increased expression of the small GTP-binding protein RhoA and activation of the RhoA/rho kinase (ROCK) pathway play an important role in the contractile dysfunction associated with diabetic cardiomyopathy in hearts from streptozotocin (STZ)-induced diabetic rats. Nitric oxide (NO) has been reported to be a positive regulator of RhoA expression in vascular smooth muscle, and we have previously found that the expression of inducible NO synthase (iNOS) is increased in hearts from STZ-diabetic rats. Therefore, in this study, we investigated the hypothesis that induction of iNOS positively regulates RhoA expression in diabetic rat hearts. METHODS AND RESULTS To determine whether NO and iNOS could increase RhoA expression in the heart, cardiomyocytes from non-diabetic rats were cultured in the presence of the NO donor sodium nitroprusside (SNP) or lipopolysaccharide (LPS) in the absence and presence of the selective iNOS inhibitor, N(6)-(1-iminoethyl)-l-lysine dihydrochloride (L-NIL). In a second study, 1 week after induction of diabetes with STZ, rats were treated with L-NIL (3 mg/kg/day) for 8 more weeks to determine the effect of iNOS inhibition in vivo on RhoA expression and cardiac contractile function. Expression of iNOS was elevated in cardiomyocytes isolated from diabetic rat hearts. Both SNP and LPS increased RhoA expression in non-diabetic cardiomyocytes. The LPS-induced elevation in RhoA expression was accompanied by an increase in iNOS expression and prevented by L-NIL. Treatment of diabetic rats with L-NIL led to a significant improvement in left ventricular developed pressure and rates of contraction and relaxation concomitant with normalization of total cardiac nitrite levels, RhoA expression, and phosphorylation of the ROCK targets LIM (Lin-11, Isl-1, Mec-3) kinase and ezrin/radixin/moesin. CONCLUSION These data suggest that iNOS is involved in the increased expression of RhoA in diabetic hearts and that one of the mechanisms by which iNOS inhibition improves cardiac function is by preventing the upregulation of RhoA and its availability for activation.


Diabetes Research and Clinical Practice | 1999

Acute and chronic oral administration of bis(maltolato)oxovanadium(IV) in Zucker diabetic fatty (ZDF) rats.

Violet G. Yuen; Erika Vera; Mary L. Battell; W.M Li; John H. McNeill

This is a preliminary study in which both acute and chronic oral administration of bis(maltolato)oxovanadium (IV) (BMOV) was examined in the Zucker diabetic fatty (ZDF) rat, an animal model that develops overt hyperglycemia in the presence of hyperinsulinemia followed by beta-cell depletion. At 9-10 weeks of age, in the presence of hyperglycemia, hyperinsulinemia and hyperlipidemia, an acute oral gavage dose response was conducted to determine glucose-lowering properties of BMOV, time of response and effect of BMOV on plasma insulin levels. Doses of BMOV greater than 0.2 mmol/kg resulted in plasma glucose levels of less than 9 mmol/l. The highest dose administered (0.8 mmol/kg) significantly reduced plasma insulin (initial: 2.83+/-0.2, final: 1.23+/-0.09 nmol/l, P<0.05) and plasma triglyceride (initial: 4.94+/-0.33, final: 1.55+/-0.07 mmol/l, P<0.05) levels. At 15 weeks of age, in the presence of hyperglycemia, hyperlipidemia and normal insulin levels, BMOV was administered orally in the drinking water for a 10-week period to determine the effect of treatment on glucose, insulin and lipid levels. BMOV treatment significantly reduced plasma glucose levels (final BMOV-treated: 13.25+/-1.43, untreated: 28.71+/-0.6 mmol/l, P<0.05) and effectively preserved pancreatic beta-cell function. These data suggest a role for BMOV as a therapeutic agent in non-insulin-dependent diabetes mellitus through improvement in glucose homeostasis and preservation of insulin reserves.


Nature Chemical Biology | 2015

The amylase inhibitor montbretin A reveals a new glycosidase inhibition motif

Leslie K. Williams; Xiaohua Zhang; Sami Caner; Christina Tysoe; Nham T. Nguyen; Jacqueline Wicki; David E. Williams; John Coleman; John H. McNeill; Violet G. Yuen; Raymond J. Andersen; Stephen G. Withers; Gary D. Brayer

The complex plant flavonol glycoside montbretin A is a potent (Ki = 8 nM) and specific inhibitor of human pancreatic α-amylase with potential as a therapeutic for diabetes and obesity. Controlled degradation studies on montbretin A, coupled with inhibition analyses, identified an essential high-affinity core structure comprising the myricetin and caffeic acid moieties linked via a disaccharide. X-ray structural analyses of the montbretin A-human α-amylase complex confirmed the importance of this core structure and revealed a novel mode of glycosidase inhibition wherein internal π-stacking interactions between the myricetin and caffeic acid organize their ring hydroxyls for optimal hydrogen bonding to the α-amylase catalytic residues D197 and E233. This novel inhibitory motif can be reproduced in a greatly simplified analog, offering potential for new strategies for glycosidase inhibition and therapeutic development.


The Journal of Physiology | 2014

Passive hind-limb cycling improves cardiac function and reduces cardiovascular disease risk in experimental spinal cord injury

Christopher R. West; Mark A. Crawford; Malihe-Sadat Poormasjedi-Meibod; Katharine D. Currie; Andre Fallavollita; Violet G. Yuen; John H. McNeill; Andrei V. Krassioukov

Using a wide array of experimental approaches, we demonstrate for the first time that spinal cord injury is associated with a rapid and sustained impairment in cardiac structure and function that is present as early as 1 week post‐injury. We provide novel data demonstrating that spinal cord injury elicits an altered Starling curve and myocardial fibrosis. The latter of these may be secondary to an up‐regulation of transforming growth factor beta‐1 and mothers against decapentaplegic homolog 3 mRNA, both of which form part of a well‐known fibrotic signalling pathway. Passive hind‐limb cycling averts the spinal cord injury‐induced impairments in cardiac structure and function, prevents myocardial fibrosis and improves blood lipid profiles. Passive lower‐limb cycling represents an elegant, cost‐effective and widely accessible therapeutic strategy that may reduce the clinical cardiovascular burden imposed by spinal cord injury and other neurological disorders.


Journal of Pharmacological and Toxicological Methods | 2000

Comparison of the glucose oxidase method for glucose determination by manual assay and automated analyzer.

Violet G. Yuen; John H. McNeill

In experimental models of diabetes, glucose levels in plasma and blood are commonly determined by colorimetric assay and by automated analyzers based on the glucose oxidase conversion of glucose and O2 to gluconate and H2O2. We have compared the glucose levels obtained by these two methods in control Wistar rats, streptozotocin diabetic Wistar rats, Zucker fa/fa fatty rats and Zucker Diabetic Fatty rats. We found that the manual glucose assay and the glucose analyzer produced comparable values up to concentrations of about 25 mM. Above this level, samples should be diluted.


Molecular and Cellular Biochemistry | 2001

Effect of vanadium on insulin and leptin in Zucker diabetic fatty rats

Jian Wang; Violet G. Yuen; John H. McNeill

Vanadium exhibits a variety of insulin-mimetic actions in vitro and in vivo. The mechanism(s) of the effect of vanadium on leptin in Zucker diabetic fatty (ZDF) rats, a model of Type 2 diabetes, is unclear. Since insulin is a stimulator of leptin production and secretion and vanadium is an insulin-mimetic or insulin-enhancing agent, we studied how vanadium affected plasma leptin levels in vivo and the relationship between plasma insulin, leptin and body fat in ZDF rats. Zucker lean and ZDF rats at 9-week old were chronically treated with bis(ethylmaltolato)oxovanadium(IV) (BEOV), an organic vanadium compound, by oral gavage daily for 3 weeks. At termination, the total body fat was weighed and blood was collected for insulin, leptin and glucose assay. BEOV treatment (0.1 mmol/kg/day) significantly decreased plasma glucose levels in ZDF rats and did not change food intake and body fat content either in lean or ZDF rats. Following 3-week treatment, plasma insulin and leptin levels in BEOV treated ZDF rats were significantly higher, 1.5 and 0.5 fold than untreated rats, respectively. The correlation coefficients in ZDF rats showed that plasma leptin levels were correlated to plasma insulin levels, but not to body fat. These data indicate that plasma leptin levels parallel plasma insulin levels, and the effects of vanadium on leptin appear to be mediated by insulin in ZDF rats.


Molecular and Cellular Biochemistry | 2006

Improvement in cardiac function of diabetic rats by bosentan is not associated with changes in the activation of PKC isoforms

Jihong Jiang; Violet G. Yuen; Hong Xiang; John H. McNeill

We previously demonstrated that chronic treatment with the mixed endothelin A and B (ETA and ETB) receptor blocker bosentan improved isolated working heart function in streptozotocin (STZ) diabetic rats. Endothelin-1 (ET-1) peptide levels, ET-1 mRNA and ETA and ETB receptor mRNA were all increased in diabetic hearts, but were unaffected by bosentan treatment, indicating that the beneficial effects of bosentan on heart appear to be on downstream effectors of ET-1 and ET receptors rather than the ET-1 system itself. Stimulation of ET-1 receptors leads to increased activation of protein kinase C (PKC), which is associated with PKC translocation from the cytosol to the membrane. Persistent activation of specific PKC isoforms has been proposed to contribute to diabetic cardiomyopathy. The purpose of this study was to determine whether chronic treatment with bosentan influences the activation of PKC isoforms in hearts from diabetic rats. Male Wistar rats were divided into four groups: control, bosentan-treated control, diabetic, and bosentan-treated diabetic. Diabetes was induced by the intravenous injection of 60 mg/kg streptozotocin. One week later, treatment with bosentan (100 mg/kg/day) by oral gavage was begun and continued for 10 weeks. The heart was then removed, homogenized, separated into soluble (cytosolic) and particulate (membrane) fractions and PKC isoform content in each fraction was determined by Western blotting. PKC α, β2, δ, ε and ζ were all detected in hearts from both control and diabetic rats. However, no change in the levels or distribution between the soluble and particulate fractions of any of these isoforms could be detected in chronic diabetic hearts compared to control, whether untreated or treated with bosentan. These observations indicate that bosentan does not improve cardiac performance in STZ diabetic rats by affecting the activation of PKC isoforms.


Hypertension | 2016

Cardiac Consequences of Autonomic Dysreflexia in Spinal Cord Injury

Christopher R. West; Jordan W. Squair; Laura A. McCracken; Katharine D. Currie; Rishi K. Somvanshi; Violet G. Yuen; Aaron A. Phillips; Ujendra Kumar; John H. McNeill; Andrei V. Krassioukov

Autonomic dysreflexia (AD), which describes episodic hypertension, is highly prevalent in people with spinal cord injury (SCI). In non-SCI, primary hypertension depresses cardiac contractile reserve via &bgr;-adrenergic mechanisms. In this study, we investigated whether AD contributes to the impairment in cardiac contractile function that accompanies SCI. We induced SCI in rodents and stratified them into sham, SCI, or SCI plus repetitive induction of AD. At 6-week post-SCI, we assessed cardiac function using in vivo (speckle-tracking echocardiography), ex vivo (working heart), and molecular approaches (Western blot). We also provide unique translational insight by comparing the relationship between the number of daily AD events and cardiac function in 14 individuals with cervical SCI. We found SCI and SCI plus repetitive induction of AD exhibited a reduction in left ventricular dimensions at 6-week post-SCI versus preinjury (P<0.049). Compared with sham, SCI exhibited a reduction in peak radial strain along with a down and rightward shift in the Starling curve (P<0.037), both of which were further depressed in SCI plus repetitive induction of AD (P<0.042). In response to &bgr;-adrenergic stimulation, SCI plus repetitive induction of AD exhibited an attenuated increase in contractile indices (P<0.001), despite no differences in &bgr;-receptor expression within the left ventricle. Our clinical data confirm our experimental findings by demonstrating significant associations between the number of daily AD events and markers of systolic and diastolic function along with left ventricular mechanics. Here, we provide the first evidence from a translational perspective that AD exerts insidious effects on cardiac function in rodents and humans with SCI.

Collaboration


Dive into the Violet G. Yuen's collaboration.

Top Co-Authors

Avatar

John H. McNeill

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Chris Orvig

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Katherine H. Thompson

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Mary L. Battell

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Barry D. Liboiron

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Brian O. Patrick

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Soter Dai

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Erika Vera

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Gary D. Brayer

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Ika A. Setyawati

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge