Violeta Peeva
Bulgarian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Violeta Peeva.
Plant Physiology | 2011
Violeta Velikova; Zsuzsanna Várkonyi; Milán Szabó; Liliana Maslenkova; Isabel Nogues; László Kovács; Violeta Peeva; Mira Busheva; Győző Garab; Thomas D. Sharkey; Francesco Loreto
Three biophysical approaches were used to get insight into increased thermostability of thylakoid membranes in isoprene-emittingplants.Arabidopsis (Arabidopsis thaliana) plants genetically modified to make isoprene and Platanus orientalis leaves, in which isoprene emission was chemically inhibited, were used. First, in the circular dichroism spectrum the transition temperature of the main band at 694 nm was higher in the presence of isoprene, indicating that the heat stability of chiral macrodomains of chloroplast membranes, and specifically the stability of ordered arrays of light-harvesting complex II-photosystem II in the stacked region of the thylakoid grana, was improved in the presence of isoprene. Second, the decay of electrochromic absorbance changes resulting from the electric field component of the proton motive force (ΔA515) was evaluated following single-turnover saturating flashes. The decay of ΔA515 was faster in the absence of isoprene when leaves of Arabidopsis and Platanus were exposed to high temperature, indicating that isoprene protects the thylakoid membranes against leakiness at elevated temperature. Finally, thermoluminescence measurements revealed that S2QB− charge recombination was shifted to higher temperature in Arabidopsis and Platanus plants in the presence of isoprene, indicating higher activation energy for S2QB− redox pair, which enables isoprene-emitting plants to perform efficient primary photochemistry of photosystem II even at higher temperatures. The data provide biophysical evidence that isoprene improves the integrity and functionality of the thylakoid membranes at high temperature. These results contribute to our understanding of isoprene mechanism of action in plant protection against environmental stresses.
Planta | 2007
Katya Georgieva; Zoltán Szigeti; Éva Sárvári; László Gáspár; Liliana Maslenkova; Violeta Peeva; Evelin Ramóna Péli; Zoltán Tuba
The functional state of the photosynthetic apparatus of flowering homoiochlorophyllous desiccation tolerant plant Haberlea rhodopensis during dehydration and subsequent rehydration was investigated in order to characterize some of the mechanisms by which resurrection plants survive drought stress. The changes in the CO2 assimilation rate, chlorophyll fluorescence parameters, thermoluminescence, fluorescence imaging and electrophoretic characteristics of the chloroplast proteins were measured in control, moderately dehydrated (50% water content), desiccated (5% water content) and rehydrated plants. During the first phase of desiccation the net CO2 assimilation decline was influenced by stomatal closure. Further lowering of net CO2 assimilation was caused by both the decrease in stomatal conductance and in the photochemical activity of photosystem II. Severe dehydration caused inhibition of quantum yield of PSII electron transport, disappearance of thermoluminescence B band and mainly charge recombination related to S2QA− takes place. The blue and green fluorescence emission in desiccated leaves strongly increased. It could be suggested that unchanged chlorophyll content and amounts of chlorophyll–proteins, reversible modifications in PSII electron transport and enhanced probability for non-radiative energy dissipation as well as increased polyphenolic synthesis during desiccation of Haberlea contribute to drought resistance and fast recovery after rehydration.
Photosynthesis Research | 2007
Jean-Marc Ducruet; Violeta Peeva; Michel Havaux
The photosynthetic apparatus, especially the electron transport chain imbedded in the thylakoid membrane, is one of the main targets of cold and heat stress in plants. Prompt and delayed fluorescence emission originating from photosystem II have been used, most often separately, to monitor the changes induced in the photosynthetic membranes during progressive warming or cooling of a leaf sample. Thermofluorescence of F0 and FM informs on the effects of heat on the chlorophyll antennae and the photochemical centers, thermoluminescence on the stabilization and movements of charges and Delayed Light Emission on the permeability of the thylakoid membranes to protons and ions. Considered together and operated simultaneously, these techniques constitute a powerful tool to characterize the effect of thermal stress on intact photosynthetic systems and to understand the mechanisms of constitutive or induced tolerance to temperature stresses.
Functional Plant Biology | 2003
Katya Georgieva; Ivanka Fedina; Liliana Maslenkova; Violeta Peeva
Barley plants (Hordeum vulgare L.) of wild type and two chlorina mutants, chlorina 126 and chlorina f2, were subjected to 42°C for 5 h at light intensities of 100 and 1000 μmol photons m-2 s-1. The exposure of plants to heat stress at a light intensity of 100 μmol m-2 s-1 induced enormous proline accumulation, indicating that the effect of heat stress was stronger when it was combined with low light intensity. The functional activity of PSII, O2evolution and flash-induced thermoluminescence B-band amplitude were strongly reduced when plants were exposed to heat at low light intensity. The results clearly showed that high light intensity had a protective effect on photosynthetic activity when barley plants were treated with high temperature. Comparison of the thermosensitivity of wild type plants and chlorina mutants revealed that O2 evolution in chlorina 126 and, especially, in chlorina f2 was more sensitive to heat than in wild type.
Scientific Reports | 2018
Magda Pál; Judit Tajti; Gabriella Szalai; Violeta Peeva; Balázs Végh; Tibor Janda
The exact relationship between polyamine, abscisic acid and proline metabolisms is still poorly understood. In the present study, the effects of putrescine and abscisic acid treatments alone or in combination with polyethylene glycol-induced osmotic stress were investigated in young wheat plants. It was observed that abscisic acid plays a role in the coordinated regulation of the proline and polyamine biosynthetic pathways, which compounds are related to each other through a common precursor. Abscisic acid pre-treatment induced similar alteration of polyamine contents as the osmotic stress, namely increased the putrescine, but decreased the spermidine contents in the leaves. These changes were mainly related to the polyamine cycle, as both the synthesis and peroxisomal oxidation of polyamines have been induced at gene expression level. Although abscisic acid and osmotic stress influenced the proline metabolism differently, the highest proline accumulation was observed in the case of abscisic acid treatments. The proline metabolism was partly regulated independently and not in an antagonistic manner from polyamine synthesis. Results suggest that the connection, which exists between polyamine metabolism and abscisic acid signalling leads to the controlled regulation and maintenance of polyamine and proline levels under osmotic stress conditions in wheat seedlings.
Photosynthesis Research | 2005
Katya Georgieva; Liliana Maslenkova; Violeta Peeva; Yuliana Markovska; Detelin Stefanov; Zoltán Tuba
Physiologia Plantarum | 2012
Violeta Peeva; Szilvia Z. Tóth; Gabriel Cornic; Jean-Marc Ducruet
Cereal Research Communications | 2005
Evelin Ramóna Péli; Violeta Peeva; Katya Georgieva; Zoltán Tuba
Environmental and Experimental Botany | 2015
Mastaneh Ahrar; Dilyana Doneva; Dimitrina Koleva; Andrea Romano; Mirco Rodeghiero; Tsonko Tsonev; Franco Biasioli; Miroslava Stefanova; Violeta Peeva; Georg Wohlfahrt; Francesco Loreto; Claudio Varotto; Violeta Velikova
Plant Physiology and Biochemistry | 2017
Gabriella Szalai; Katalin Janda; Éva Darkó; Tibor Janda; Violeta Peeva; Magda Pál