Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Violeta Roka.
Magnetic Resonance Imaging | 2012
Eleftherios Lavdas; Panayiotis Mavroidis; Vasiliki Hatzigeorgiou; Violeta Roka; Nikos Arikidis; Georgia Oikonomou; Konstantinos Andrianopoulos; Ioannis Notaras
The purpose of this study is to evaluate the ability of proton density (PD)-BLADE sequences in reducing or even eliminating motion and pulsatile flow artifacts in knee magnetic resonance imaging examinations. Eighty consecutive patients, who had been routinely scanned for knee examination, participated in the study. The following pairs of sequences with and without BLADE were compared: (a) PD turbo spin echo (TSE) sagittal (SAG) fat saturation (FS) in 35 patients, (b) PD TSE coronal (COR) FS in 19 patients, (c) T2 TSE axial in 13 patients and (d) PD TSE SAG in 13 patients. Both qualitative and quantitative analyses were performed based on the signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and relative contrast (ReCon) measures of normal anatomic structures. The qualitative analysis was performed by experienced radiologists. Also, the presence of image motion and pulsation artifacts was evaluated. Based on the results of the SNR, CRN and ReCon for the different sequences and anatomical structures, the BLADE sequences were significantly superior in 19 cases, whereas the corresponding conventional sequences were significantly superior in only 6 cases. BLADE sequences eliminated motion artifacts in all the cases. However, motion artifacts were shown in (a) six PD TSE SAG FS, (b) three PD TSE COR FS, (c) three PD TSE SAG and (d) two T2 TSE axial conventional sequences. In our results, it was found that, in PD FS sequences (sagittal and coronal), the differences between the BLADE and conventional sequences regarding the elimination of motion and pulsatile flow artifacts were statistically significant. In all the comparisons, the PD FS BLADE sequences (coronal and sagittal) were significantly superior to the corresponding conventional sequences regarding the classification of their image quality. In conclusion, this technique appears to be capable to potentially eliminate motion and pulsatile flow artifacts in MR images.
Magnetic Resonance Imaging | 2013
Eleftherios Lavdas; Panayiotis Mavroidis; Spiros Kostopoulos; Dimitrios Glotsos; Violeta Roka; Theofilos Topalzikis; A. Bakas; Georgia Oikonomou; Nikos Papanikolaou; Georgios Batsikas; Ioannis Kaffes; Dimitrios Kechagias
The purpose of this study is to compare two types of sequences in brain magnetic resonance (MR) examinations of uncooperative and cooperative patients. For each group of patients, the pairs of sequences that were compared were two T2-weighted (T2-W) fluid attenuated inversion recovery sequences with different k-space trajectories (conventional Cartesian and BLADE) and two T2-TSE weighted with different k-space trajectories (conventional Cartesian and BLADE). Twenty-three consecutive uncooperative patients and 44 cooperative patients, who routinely underwent brain MR imaging examination, participated in the study. Both qualitative and quantitative analyses were performed based on the signal-to-noise ratio, contrast-to-noise ratio (CNR), and relative contrast (ReCon) measures of normal anatomic structures. The qualitative analysis was performed by experienced radiologists. Also, the presence of motion, other (e.g., Gibbs, susceptibility artifacts, phase encoding from vessels) artifacts and pulsatile flow artifacts was evaluated. In the uncooperative group of patients, BLADE sequences were superior to the corresponding conventional sequences in all the cases. Furthermore, the differences were found to be statistically significant in almost all the cases. In the cooperative group of patients, BLADE sequences were superior to the conventional sequences with the differences of the CNR and ReCon values in nine cases being statistically significant. Furthermore, BLADE sequences eliminated motion and other artifacts and T2 FLAIR BLADE sequences eliminated pulsatile flow artifacts. BLADE sequences (T2-TSE and T2 FLAIR) should be used in brain MR examinations of uncooperative patients. In cooperative patients, T2-TSE BLADE sequences may be used as part of the routine protocol and orbital examinations. T2 FLAIR BLADE sequences may be used optionally in examinations of AVM, orbits, haemorrhages, ventricular lesions, lesions in the frontal lobe, periventricular lesions, lesions in regions close to artifacts and lesions in posterior fossa.
Magnetic Resonance Imaging | 2010
Eleftherios Lavdas; Panayiotis Mavroidis; Katerina Vassiou; Violeta Roka; Ioannis V. Fezoulidis; Marianna Vlychou
The purpose of this study was to assess the effect of chemical shift artifacts and fat suppression between contrast-enhanced T1-weighted fast spin-echo (FSE) sequence with fat suppression and contrast-enhanced T1-weighted fluid attenuated inversion recovery (FLAIR) sequence with fat suppression in magnetic resonance imaging (MRI) of the thoracic spine at 3.0T. Forty patients, who underwent MRI examination, were recruited and analyzed both qualitatively and quantitatively. Due to chemical shift artifacts in the T1-weighted FSE, 14 of the patients were found to be of non-diagnostic value. On the contrary, in 11 of those 14 patients, no chemical shift artifacts were observed in the T1-weighted FLAIR sequence. Regarding the efficiency of fat suppression, both sequences achieved successful fat suppression. Consequently, the use of T1-weighted FLAIR fat suppression after contrast administration sequence seems to eliminate or significantly reduce image quality deterioration stemming from chemical shift artifacts in thoracic spine examinations.
Magnetic Resonance Imaging | 2013
Eleftherios Lavdas; Theofilos Topalzikis; Panayiotis Mavroidis; Ioannis Kyriakis; Violeta Roka; Spiros Kostopoulos; Dimitrios Glotsos; Christos Zilidis; Sotirios Stathakis; Antonios Tsagkalis; Nikos Papanikolaou; Georgios Batsikas; Dimitrios L. Arvanitis; Katerina Vassiou
The purpose of this study, is to compare the sequences: 1) proton density (PD) BLADE (BLADE is a PROPELLER-equivalent implementation of the Siemens Medical System) with fat saturation (FS) coronal (COR), 2) PD FS COR, 3) multi-planar reconstruction (MPR) with 3mm slice thickness and 4) multi-planar reconstruction (MPR) with 1.5mm slice thickness, both from the T2 3D-double-echo steady state (DESS) with water excitation (WE) sagittal (SAG), regarding their abilities to identify changes in the femorotibial condyle cartilage in knee MRI examinations. Thirty three consecutive patients with osteoarthritis (18 females, 15 males; mean age 56years, range 37-71years), who had been routinely scanned for knee examination using the previously mentioned image acquisition techniques, participated in the study. A quantitative analysis was performed based on the relative contrast (ReCON) measurements, which were taken both on normal tissues as well as on pathologies. Additionally, a qualitative analysis was performed by two radiologists. Motion and pulsatile flow artifacts were evaluated. The PD BLADE FS COR sequence produced images of higher contrast between Menisci and Cartilage, Fluid and Cartilage, Pathologies and Cartilage as well as of the Conspicuousness Superficial Cartilage and it was found to be superior to the other sequences (p<0.001). The sequences T2 3D DESS 1.5mm and T2 3D DESS 3mm were significantly superior to the PD BLADE FS COR and the PD FS COR sequences in the visualization of Bone and Cartilage and the Conspicuousness Deep Surface Cartilage. This pattern of results is also confirmed by the quantitative analysis. PD FS BLADE sequences are ideal for the depiction of the cartilage pathologies compared to the conventional PD FS and T2 3D DESS sequences.
Magnetic Resonance Imaging | 2013
Eleftherios Lavdas; Panayiotis Mavroidis; Spiros Kostopoulos; Dimitrios Glotsos; Violeta Roka; Aristotle G. Koutsiaris; Georgios Batsikas; Georgios K. Sakkas; Antonios Tsagkalis; Ioannis Notaras; Sotirios Stathakis; Nikos Papanikolaou; Katerina Vassiou
The purpose of this study is to evaluate the ability of T2 turbo spin echo (TSE) axial and sagittal BLADE sequences in reducing or even eliminating motion, pulsatile flow and cross-talk artifacts in lumbar spine MRI examinations. Forty four patients, who had routinely undergone a lumbar spine examination, participated in the study. The following pairs of sequences with and without BLADE were compared: a) T2 TSE Sagittal (SAG) in thirty two cases, and b) T2 TSE Axial (AX) also in thirty two cases. Both quantitative and qualitative analyses were performed based on measurements in different normal anatomical structures and examination of seven characteristics, respectively. The qualitative analysis was performed by experienced radiologists. Also, the presence of image motion, pulsatile flow and cross-talk artifacts was evaluated. Based on the results of the qualitative analysis for the different sequences and anatomical structures, the BLADE sequences were found to be significantly superior to the conventional ones in all the cases. The BLADE sequences eliminated the motion artifacts in all the cases. In our results, it was found that in the examined sequences (sagittal and axial) the differences between the BLADE and conventional sequences regarding the elimination of motion, pulsatile flow and cross-talk artifacts were statistically significant. In all the comparisons, the T2 TSE BLADE sequences were significantly superior to the corresponding conventional sequences regarding the classification of their image quality. In conclusion, this technique appears to be capable of potentially eliminating motion, pulsatile flow and cross-talk artifacts in lumbar spine MR images and producing high quality images in collaborative and non-collaborative patients.
Magnetic Resonance Imaging | 2013
Eleftherios Lavdas; Panayiotis Mavroidis; Theofilos Topaltzikis; Vasileios Slatinopoulos; Violeta Roka; Anna Vlachopoulou; Nikos Papanikolaou; Sotirios Stathakis; Eftichia Kapsalaki; Georgios Batsikas
The purpose of this study is to report the significant differences found in the identification of lesions in cervical spinal cord of two patients with multiple sclerosis when using the BLADE T2-TSE and BLADE T2-TIRM sequences as opposed to the conventional T2-TSE and T2-TIRM sequences for sagittal acquisition at 1.5T. In both patients, one more lesion was identified with the BLADE sequences than with the conventional ones. Consequently, we suggest the use of BLADE T2-TSE and BLADE T2-TIRM sequences in place of conventional ones for sagittal examination of the cervical spinal cord of multiple sclerosis patients. The advantages of ΤΙRΜ to reveal the pathology of the cervical spinal cord and the advantage of BLADE sequences to improve image quality should be combined in a sequence that could be ideal for cervical spinal cord examinations.
Medical Physics | 2015
P Mavroidis; N Boci; Spiros Kostopoulos; C Ninos; Dimitrios Glotsos; Georgia Oikonomou; A Bakas; Violeta Roka; G Sakkas; Antonios Tsagkalis; V Chatzivasileiou; Georgios Batsikas; D Cavouras; N Papanikolaou; Sotirios Stathakis; Eleftherios Lavdas
Purpose: The aim of this present study is to increase bandwidth (BW) and echo train length (ETL) in Proton Density Turbo Spin Echo (PD TSE) sequences with and without fat saturation (FS) as well as in Turbo Inversion Recovery Magnitude sequences (TIRM) in order to assess whether these sequences are capable of reducing susceptibility artifacts. Methods: We compared 1) TIRM coronal (COR) with the same sequence with increased both BW and ETL 2) Conventional PD TSE sagittal (SAG) with FS with an increased BW 3) Conventional PD TSE SAG without FS with an increased BW 4) Conventional PD TSE SAG without FS with increased both BW and ETL. A quantitative analysis was performed to measure the extent of the susceptibility artifacts. Furthermore, a qualitative analysis was performed by two radiologists in order to evaluate the susceptibility artifacts, image distortion and fat suppression. The depiction of cartilage, menisci, muscles, tendons and bone marrow were also qualitatively analyzed. Results: The quantitative analysis found that the modified TIRM sequence is significantly superior to the conventional one regarding the extent of the susceptibility artifacts. In the qualitative analysis, the modified TIRM sequence was superior to the corresponding conventional one in eight characteristics out of ten that were analyzed. The modified PD TSE with FS was superior to the corresponding conventional one regarding the susceptibility artifacts, image distortion and depiction of bone marrow and cartilage while achieving effective fat saturation. The modified PD TSE sequence without FS with a high (H) BW was found to be superior corresponding to the conventional one in the case of cartilage. Conclusion: Consequently, TIRM sequence with an increased BW and ETL is proposed for producing images of high quality and modified PD TSE with H BW for smaller metals, especially when FS is used.
Medical Physics | 2015
P Mavroidis; A Vlachopoulou; Spiros Kostopoulos; C Ninos; Dimitrios Glotsos; A Bakas; Georgia Oikonomou; Violeta Roka; E Kapsalaki; A Tsirika; N Papanikolaou; Sotirios Stathakis; Eleftherios Lavdas
BACKGROUND This study aims at demonstrating the ability of BLADE sequences to reduce or even eliminate all the image artifacts as well as verifying the significance of using this technique in certain pathological conditions. MATERIAL AND METHODS This study involved fourteen consecutive patients (5 females, 9 males), who routinely underwent magnetic resonance imaging (MRI) brain examination, between 2010-2014. The applied routine protocol for brain MRI examination included the following sequences: i) T2-weighted (W) fluid-attenuated inversion recovery (FLAIR) axial; ii) T2-W turbo spin echo (TSE) axial; iii) T2*-W axial, iv) T1-W TSE sagittal; v) Diffusion-weighted (DWI) axial; vi) T1-W TSE axial; vii) T1-W TSE axial+contrast. Additionally, the T2-W FLAIR BLADE sequence was added to the protocol in cases of cystic tumors. Two radiologists independently evaluated all the images at two separate settings, which were performed 3 weeks apart. The presence of image artifacts such as motion, flow, chemical shift and Gibbs ringing artifacts, were also evaluated by the radiologists. In the measurements of the cysts, the extent of the divergence by the two MRI techniques (conventional and BLADE) was used by the two radiologists to evaluate the accuracy of the two techniques to determine the size of the cysts. RESULTS BLADE sequences were found to be more reliable than the conventional ones regarding the estimation of the cyst size. The qualitative analysis showed that the T2 FLAIR BLADE sequences were superior to the conventional T2 FLAIR with statistical significance (p <0.001) in the following fields: i) overall image quality, ii) cerebrospinal fluid (CSF) nulling; iii) contrast between pathology and its surrounding; iv) borders of the pathology; v) motion artifacts; vi) flow artifacts; vii) chemical shift artifacts and viii) Gibbs ringing artifacts. CONCLUSIONS BLADE sequence was found to decrease both flow artifacts in the temporal lobes and motion artifacts from the orbits. Additionally, it was shown to improve flow artifacts and image quality in cystic pathologies such as arachnoid cysts. Hippokratia 2016, 20(3): 244-248.
Medical Physics | 2014
Panayiotis Mavroidis; Eleftherios Lavdas; Spiros Kostopoulos; C Ninos; A Strikou; Dimitrios Glotsos; A Vlachopoulou; Georgia Oikonomou; N Economopoulos; Violeta Roka; G Sakkas; Antonios Tsagkalis; S Statkahis; N Papanikolaou; Georgios Batsikas
PURPOSE To assess the efficacy of the BLADE technique to eliminate motion, truncation, flow and other artifacts in Cervical Spine MRI compared to the conventional technique. To study the ability of the examined sequences to reduce the indetention and wrap artifacts, which have been reported in BLADE sagittal sequences. METHODS Forty consecutive subjects, who had been routinely scanned for cervical spine examination using four different image acquisition techniques, were analyzed. More specifically, the following pairs of sequences were compared: a) T2 TSE SAG vs. T2 TSE SAG BLADE and b) T2 TIRM SAG vs. T2 TIRM SAG BLADE. A quantitative analysis was performed using the signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and relative contrast (ReCon) measures. A qualitative analysis was also performed by two radiologists, who graded seven image characteristics on a 5-point scale (0:non-visualization; 1:poor; 2:average; 3:good; 4:excellent). The observers also evaluated the presence of image artifacts (motion, truncation, flow, indentation). RESULTS Based on the findings of the quantitative analysis, the ReCON values of the CSF (cerebrospinal fluid)/SC (spinal cord) between TIRM SAG and TIRM SAG BLADE were found to present statistical significant differences (p<0.001). Regarding motion and truncation artifacts, the T2 TSE SAG BLADE was superior compared to the T2 TSE SAG and the T2 TIRM SAG BLADE was superior compared to the T2 TIRM SAG. Regarding flow artifacts, T2 TIRM SAG BLADE eliminated more artifacts compared to the T2 TIRM SAG. CONCLUSION The use of BLADE sequences in cervical spine MR examinations appears to be capable of potentially eliminating motion, pulsatile flow and trancation artifacts. Furthermore, BLADE sequences are proposed to be used in the standard examination protocols based on the fact that a significantly improved image quality could be achieved.
Medical Physics | 2013
Panayiotis Mavroidis; Eleftherios Lavdas; Theofilos Topalzikis; I Kyriakis; Violeta Roka; Spiros Kostopoulos; Dimitrios Glotsos; K Zilidis; Sotirios Stathakis; Antonios Tsagkalis; N Papanikolaou; Katerina Vassiou; Georgios Batsikas
PURPOSE The purpose of this study, is to compare the sequences: 1) proton density (PD) BLADE with fat saturation (FS) coronal (COR), 2) PD FS COR, 3) multi-planar reconstruction (MPR) with 3mm slice thickness and 4) multi-planar reconstruction (MPR) with 1.5mm slice thickness, both derived from the T2 3D-double-echo steady state (DESS) with water excitation (WE) sagittal (SAG) sequence, regarding their abilities to identify changes in the femorotibial condyle cartilage in knee MRI examinations. METHODS Thirty three consecutive patients with osteoarthritis (18 females, 15 males; mean age 56 years, range 37-71 years), who had been routinely scanned for knee examination using the previously mentioned image acquisition techniques, participated in the study. A quantitative analysis was performed based on the relative contrast (ReCON) measurements, which were taken both on normal tissues as well as on pathologies. Additionally, a qualitative analysis was performed by two radiologists. Motion and pulsatile flow artifacts were evaluated. RESULTS The PD BLADE FS COR sequence produced images of higher contrast between Menisci and Cartilage, Fluid and Cartilage, Pathologies and Cartilage as well as of the Conspicuousness Superficial Cartilage and it was found to be superior to the other sequences (p<0.001). The sequences T2 3D DESS 1.5mm and T2 3D DESS 3mm were significantly superior to the PD BLADE FS COR and the PD FS COR sequences in the visualization of Bone, Cartilage and the Conspicuousness Deep Surface Cartilage. This pattern of results is also confirmed by the quantitative analysis. Also, in the PD BLADE FS COR sequence, the results of the Truncation Artifact, Pulsation Artifact, Edge Sharpness and Blurring Artifacts, were superior to the other sequences (p<0.001). CONCLUSION PD FS BLADE sequences are ideal for the depiction of the cartilage pathologies compared to the conventional PD FS and T2 3D DESS sequences.
Collaboration
Dive into the Violeta Roka's collaboration.
University of Texas Health Science Center at San Antonio
View shared research outputs