Violeta Yu
Amgen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Violeta Yu.
Analytical Biochemistry | 2009
Jennifer Dao; Robert J.M. Kurzeja; Jose M. Morachis; Henrike Veith; Jeffery K. Lewis; Violeta Yu; Christopher M. Tegley; Philip Tagari
The human hypoxia-inducible factor prolyl hydroxylases 1, 2, and 3 (HIF-PHD1, -2, and -3) are thought to act as proximal sensors of cellular hypoxia by virtue of their mechanism-based dependence on molecular oxygen. These 2-oxoglutarate (2-OG) and non-heme iron-dependent oxygenases constitutively hydroxylate HIF, resulting in high-affinity binding to Von Hippel-Lindau protein (pVHL). Some reported affinities for the HIF-PHDs for 2-OG and iron approach the estimated physiological concentrations for these cofactors, suggesting that the system as described is not catalytically optimal. Here we report the enzymatic characterization of full-length recombinant human HIF-PHD2 using a novel and sensitive catalytic assay. We demonstrated submicromolar affinities for 2-OG and ferrous iron and HIF-PHD2 Km values for oxygen that are greater than atmospheric oxygen levels, suggesting that molecular oxygen is indeed the key regulator of this pathway. In addition, we observed enhancement of HIF-PHD2 catalytic activity in the presence of ascorbic acid with only minor modifications of HIF-PHD2 requirements for 2-OG, and a detailed pH study demonstrated optimal HIF-PHD2 catalytic activity at pH 6.0. Lastly, we used this sensitive and facile assay to rapidly perform a large high-throughput screen of a chemical library to successfully identify and characterize novel 2-OG competitive inhibitors of HIF-PHD2.
Journal of Medicinal Chemistry | 2008
Essa Hu; Andrew Tasker; Ryan White; Roxanne Kunz; Jason Brooks Human; Ning Chen; Roland W. Bürli; Randall W. Hungate; Perry M. Novak; Andrea Itano; Xuxia Zhang; Violeta Yu; Yen Nguyen; Yanyan Tudor; Matthew Plant; Shaun Flynn; Yang Xu; Kristin L. Meagher; Douglas A. Whittington; Gordon Ng
Inhibition of c-Kit has the potential to treat mast cell associated fibrotic diseases. We report the discovery of several aminoquinazoline pyridones that are potent inhibitors of c-Kit with greater than 200-fold selectivity against KDR, p38, Lck, and Src. In vivo efficacy of pyridone 16 by dose-dependent inhibition of histamine release was demonstrated in a rodent pharmacodynamic model of mast cell activation.
Journal of Medicinal Chemistry | 2011
Laurie B. Schenkel; Xin Huang; Alan C. Cheng; Holly L. Deak; Elizabeth M. Doherty; Renee Emkey; Yan Gu; Hakan Gunaydin; Joseph L. Kim; Josie Lee; Robert Loberg; Philip R. Olivieri; Jeanne Pistillo; Jin Tang; Qian Wan; Hui-Ling Wang; Shen-Wu Wang; Mary Wells; Bin Wu; Violeta Yu; Liqin Liu; Stephanie Geuns-Meyer
Developing Janus kinase 2 (Jak2) inhibitors has become a significant focus for small molecule drug discovery programs in recent years due to the identification of a Jak2 gain-of-function mutation in the majority of patients with myeloproliferative disorders (MPD). Here, we describe the discovery of a thienopyridine series of Jak2 inhibitors that culminates with compounds showing 100- to >500-fold selectivity over the related Jak family kinases in enzyme assays. Selectivity for Jak2 was also observed in TEL-Jak cellular assays, as well as in cytokine-stimulated peripheral blood mononuclear cell (PBMC) and whole blood assays. X-ray cocrystal structures of 8 and 19 bound to the Jak2 kinase domain aided structure-activity relationship efforts and, along with a previously reported small molecule X-ray cocrystal structure of the Jak1 kinase domain, provided structural rationale for the observed high levels of Jak2 selectivity.
Journal of Medicinal Chemistry | 2012
Richard T. Lewis; Christiane Bode; Deborah Choquette; Michele Potashman; Karina Romero; John Stellwagen; Yohannes Teffera; Earl Moore; Douglas A. Whittington; Hao Chen; Linda F. Epstein; Renee Emkey; Paul S. Andrews; Violeta Yu; Douglas Saffran; Man Xu; Allison Drew; Patricia Merkel; Steven Szilvassy; Rachael L. Brake
A class of 2-acyliminobenzimidazoles has been developed as potent and selective inhibitors of anaplastic lymphoma kinase (ALK). Structure based design facilitated the rapid development of structure-activity relationships (SAR) and the optimization of kinase selectivity. Introduction of an optimally placed polar substituent was key to solving issues of metabolic stability and led to the development of potent, selective, orally bioavailable ALK inhibitors. Compound 49 achieved substantial tumor regression in an NPM-ALK driven murine tumor xenograft model when dosed qd. Compounds 36 and 49 show favorable potency and PK characteristics in preclinical species indicative of suitability for further development.
Journal of Biomolecular Screening | 2012
Violeta Yu; Tanja Fisch; Alexander M. Long; Jin Tang; Josie Han Lee; Markus Hierl; Hao Chen; Peter Yakowec; Ralf Schwandner; Renee Emkey
Lysine demethylase 1 (LSD1) and Jumonji C domain–containing oxygenase D2C (JMJD2C) participate in regulating the methylation status of histone H3 lysine residues. In some contexts, LSD1 and JMJD2C activity causes enhanced cellular proliferation, which may lead to tumorigenesis. The authors explored the utility of time-resolved fluorescence resonance energy transfer (TR-FRET) immunoassays, which employed peptides consisting of the first 21 amino acids of histone H3 in which lysine 4 (H3K4) or lysine 9 (H3K9) was methylated (me) to quantify LSD1 and JMJD2C activity. The LSD1 assay monitored demethylation of the H3K4me1 peptide using an antibody that recognizes H3K4me1 but not the unmethylated peptide product. The JMJD2C assay measured demethylation of H3K9me3 with an antibody that selectively recognizes H3K9me2. The optimized conditions resulted in robust assays (Z′ > 0.7) that required only 3 to 6 nM of enzyme in a reaction volume of 6 to 10 µL. These assays were used to compare the activity of different LSD1 constructs and to determine the apparent Km of each JMJD2C substrate. Finally, both assays were used in a high-throughput setting for identifying demethylase inhibitors. Compounds discovered by these TR-FRET methods may lead to powerful tools for ascertaining the roles of demethylases in a cellular context and ultimately for potential cancer treatments.
Bioorganic & Medicinal Chemistry Letters | 2009
Chun-Ya E. Han; Youping Wang; Longchuan Yu; David Powers; Xiaoling Xiong; Violeta Yu; Yen Nguyen; David J. St. Jean; Philip Babij
A chemical screen of 45,000 compounds from a diverse collection led to the identification of two series of small molecules with potent osteogenic activity in mouse MC3T3-E1 osteoblast cells. The first chemical group was characterized by an amino benzothiazole core (AMG0892 series) and the second group by a naphthyl amide core (AMG0309 series). Using alkaline phosphatase (ALP), osteocalcin (OCL) and calcium as markers of osteoblast differentiation and mineralization, both chemical series showed EC(50)s in the 0.01-0.2 microM range and were consistent for all three markers. Compounds inhibited cell proliferation, had no effect on apoptosis and showed evidence for CREB pathway activity. The present compounds represent some of the most potent osteogenic small molecules reported to date and provide new tools for elucidating signaling mechanisms in osteoblasts.
Journal of Medicinal Chemistry | 2008
Liping H. Pettus; Shimin Xu; Guo-Qiang Cao; Partha P. Chakrabarti; Robert M. Rzasa; Kelvin Sham; Ryan Wurz; Dawei Zhang; Scott Middleton; Bradley Henkle; Matthew Plant; Christiaan J. M. Saris; Lisa Sherman; Lu Min Wong; David Powers; Yanyan Tudor; Violeta Yu; Matthew R. Lee; Rashid Syed; Faye Hsieh; Andrew Tasker
The p38 mitogen-activated protein kinase (MAPK) is a central signaling molecule in many proinflammatory pathways, regulating the cellular response to a multitude of external stimuli including heat, ultraviolet radiation, osmotic shock, and a variety of cytokines especially interleukin-1beta and tumor necrosis factor alpha. Thus, inhibitors of this enzyme are postulated to have significant therapeutic potential for the treatment of rheumatoid arthritis, inflammatory bowel disease, osteoporosis, and many other diseases where aberrant cytokine signaling is the driver of disease. Herein, we describe a novel class of 3-amino-7-phthalazinylbenzoisoxazole-based inhibitors. With relatively low molecular weight, these compounds are highly potent in enzyme and cell-based assays, with minimal protein shift in 50% human whole blood. Compound 3c was efficacious (ED 50 = 0.05 mg/kg) in the rat collagen induced arthritis (CIA) model.
Journal of Medicinal Chemistry | 2016
Erin F. DiMauro; Stephen Altmann; Loren Berry; Howard Bregman; Nagasree Chakka; Margaret Y. Chu-Moyer; Elma Feric Bojic; Robert S. Foti; Robert T. Fremeau; Hua Gao; Hakan Gunaydin; Angel Guzman-Perez; Brian E. Hall; Hongbing Huang; Michael Jarosh; Thomas Kornecook; Josie Lee; Joseph Ligutti; Dong Liu; Bryan D. Moyer; Daniel Ortuno; Paul Rose; Laurie B. Schenkel; Kristin Taborn; Jean Wang; Yan Wang; Violeta Yu; Matthew Weiss
The majority of potent and selective hNaV1.7 inhibitors possess common pharmacophoric features that include a heteroaryl sulfonamide headgroup and a lipophilic aromatic tail group. Recently, reports of similar aromatic tail groups in combination with an acyl sulfonamide headgroup have emerged, with the acyl sulfonamide bestowing levels of selectivity over hNaV1.5 comparable to the heteroaryl sulfonamide. Beginning with commercially available carboxylic acids that met selected pharmacophoric requirements in the lipophilic tail, a parallel synthetic approach was applied to rapidly generate the derived acyl sulfonamides. A biaryl acyl sulfonamide hit from this library was elaborated, optimizing for potency and selectivity with attention to physicochemical properties. The resulting novel leads are potent, ligand and lipophilic efficient, and selective over hNaV1.5. Representative lead 36 demonstrates selectivity over other human NaV isoforms and good pharmacokinetics in rodents. The biaryl acyl sulfonamides reported herein may also offer ADME advantages over known heteroaryl sulfonamide inhibitors.
Journal of Medicinal Chemistry | 2017
Matthew Weiss; Thomas Dineen; Isaac E. Marx; Steven Altmann; Alessandro Boezio; Howard Bregman; Margaret Y. Chu-Moyer; Erin F. DiMauro; Elma Feric Bojic; Robert S. Foti; Hua Gao; Russell Graceffa; Hakan Gunaydin; Angel Guzman-Perez; Hongbing Huang; Liyue Huang; Michael Jarosh; Thomas Kornecook; Charles Kreiman; Joseph Ligutti; Daniel S. La; Min-Hwa Jasmine Lin; Dong Liu; Bryan D. Moyer; Hanh Nho Nguyen; Emily A. Peterson; Paul Rose; Kristin Taborn; Beth D. Youngblood; Violeta Yu
Several reports have recently emerged regarding the identification of heteroarylsulfonamides as NaV1.7 inhibitors that demonstrate high levels of selectivity over other NaV isoforms. The optimization of a series of internal NaV1.7 leads that address a number of metabolic liabilities including bioactivation, PXR activation, as well as CYP3A4 induction and inhibition led to the identification of potent and selective inhibitors that demonstrated favorable pharmacokinetic profiles and were devoid of the aforementioned liabilities. The key to achieving this within a series prone to transporter-mediated clearance was the identification of a small range of optimal cLogD values and the discovery of subtle PXR SAR that was not lipophilicity dependent. This enabled the identification of compound 20, which was advanced into a target engagement pharmacodynamic model where it exhibited robust reversal of histamine-induced scratching bouts in mice.
Journal of Pharmacology and Experimental Therapeutics | 2017
Thomas Kornecook; Ruoyuan Yin; Stephen Altmann; Xuhai Be; Virginia Berry; Christopher P. Ilch; Michael Jarosh; Danielle Johnson; Josie H. Lee; Sonya G. Lehto; Joseph Ligutti; Dong Liu; Jason Luther; David J. Matson; Danny Ortuno; John Roberts; Kristin Taborn; Jinti Wang; Matthew Weiss; Violeta Yu; Dawn Zhu; Robert T. Fremeau; Bryan D. Moyer
Potent and selective antagonists of the voltage-gated sodium channel NaV1.7 represent a promising avenue for the development of new chronic pain therapies. We generated a small molecule atropisomer quinolone sulfonamide antagonist AMG8379 and a less active enantiomer AMG8380. Here we show that AMG8379 potently blocks human NaV1.7 channels with an IC50 of 8.5 nM and endogenous tetrodotoxin (TTX)-sensitive sodium channels in dorsal root ganglion (DRG) neurons with an IC50 of 3.1 nM in whole-cell patch clamp electrophysiology assays using a voltage protocol that interrogates channels in a partially inactivated state. AMG8379 was 100- to 1000-fold selective over other NaV family members, including NaV1.4 expressed in muscle and NaV1.5 expressed in the heart, as well as TTX-resistant NaV channels in DRG neurons. Using an ex vivo mouse skin-nerve preparation, AMG8379 blocked mechanically induced action potential firing in C-fibers in both a time-dependent and dose-dependent manner. AMG8379 similarly reduced the frequency of thermally induced C-fiber spiking, whereas AMG8380 affected neither mechanical nor thermal responses. In vivo target engagement of AMG8379 in mice was evaluated in multiple NaV1.7-dependent behavioral endpoints. AMG8379 dose-dependently inhibited intradermal histamine-induced scratching and intraplantar capsaicin-induced licking, and reversed UVB radiation skin burn–induced thermal hyperalgesia; notably, behavioral effects were not observed with AMG8380 at similar plasma exposure levels. AMG8379 is a potent and selective NaV1.7 inhibitor that blocks sodium current in heterologous cells as well as DRG neurons, inhibits action potential firing in peripheral nerve fibers, and exhibits pharmacodynamic effects in translatable models of both itch and pain.