Violetta Kozik
University of Silesia in Katowice
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Violetta Kozik.
Molecules | 2009
Josef Jampilek; Robert Musiol; Matus Pesko; Katarina Kralova; Marcela Vejsova; James Carroll; Aidan Coffey; Jacek Finster; D. Tabak; Halina Niedbala; Violetta Kozik; Jaroslaw Polanski; Jozef Csollei; Jiri Dohnal
In the study, a series of twelve ring-substituted 4-hydroxy-1H-quinolin-2-one derivatives were prepared. The procedures for synthesis of the compounds are presented. The compounds were analyzed using RP-HPLC to determine lipophilicity and tested for their photosynthesis-inhibiting activity using spinach (Spinacia oleracea L.) chloroplasts. All the synthesized compounds were also evaluated for antifungal activity using in vitro screening with eight fungal strains. For all the compounds, the relationships between the lipophilicity and the chemical structure of the studied compounds are discussed, as well as their structure-activity relationships (SAR).
RSC Advances | 2016
Katarzyna Pytlakowska; Violetta Kozik; Marek Matussek; M. Pilch; Barbara Hachuła; Karina Kocot
A novel and selective sorbent for micro-solid phase extraction was synthesized by chemical functionalization of graphene oxide with glycine. The structure of this nanomaterial, referred to as GO-Gly, was confirmed by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy. GO-Gly was used for preconcentration of chromium, zinc, and copper ions from water samples prior to their determination by energy dispersive X-ray fluorescence spectrometry (EDXRF). The proposed procedure is based on dispersion of micro amounts of GO-Gly in aqueous samples. After adsorption of metal ions on its surface, samples were filtered under vacuum and then membrane filters were directly submitted to energy dispersive X-ray fluorescence spectrometric measurements. In order to obtain optimal preconcentration conditions, some parameters affecting sorption process, such as pH, amount of GO-Gly, sorption times, and sample volume, were examined. Under optimal conditions the calibration curves were linear in a 1–150 ng mL−1 range with recoveries higher than 97%. The obtained detection limits for Cr(III), Zn(II), and Cu(II) determinations are 0.15, 0.07, and 0.08 ng mL−1, respectively. A relative standard deviation of the proposed procedure (at a 10 ng mL−1 level for n = 10) is lower than 2.3%. The proposed method was successfully applied for determination of Cr(III), Zn(II), and Cu(II) ions in water samples.
RSC Advances | 2016
Andrzej Bak; Violetta Kozik; A. Smolinski; Josef Jampilek
In the current study a hybrid approach that combines 3D and 4D-QSAR methods based on grid and neural (SOM) paradigms with automated variable elimination IVE-PLS procedure was examined to identify the pharmacophore pattern for cholic acid derivatives as potential drug absorption promoters. In particular, the outcome of multidimensional structure–activity modelling of the transdermal penetration effect (SKIN) and intestinal absorption enhancement (PAMPA) using the classical CoMFA and Hopfingers cube formalisms has been compared with the neural CoMSA and SOM-4D-QSAR methodology for a set of cholic derivatives. The comparison of the corresponding statistic characteristics generally confirms the previously observed trends in pairs of qcv2/qtest2 values where 3D/4D SOM-based protocols with a fuzzy molecular representation for various training/test subset distributions outperforms the standard cubic 3D/4D procedures. A systematic model space inspection with splitting data collection into training/test subsets to monitor statistical performance in the effort for mapping of the probabilistic pharmacophore geometry was conducted using the stochastic SMV procedure. The iterative variable elimination procedure (IVE-PLS) represents a filter for specifying descriptors having potentially the highest individual weightings for the observed potency of cholic acid analogues as drug absorption promoters. A simplified visual inspection of pharmacophore sites gives the clear picture of regions that might be modified to modulate the compound potency. A pseudo-consensus 3D/4D-QSAR methodology was used to extract an average 3D pharmacophore hypothesis by exploration of the most densely populated training/test subpopulations to indicate the relevant factors contributing to the drug absorption potency of cholic acid derivatives.
Sar and Qsar in Environmental Research | 2017
Andrzej Bak; Violetta Kozik; A. Smolinski; Josef Jampilek
Abstract Finding a balance between a desired drug’s potency and its physicochemical properties that are important for its molecule pharmacokinetic or pharmacodynamics profile is still a challenging issue in rational drug discovery. Quantitative assessment of the lipophilic characteristics of potential drug molecules is indispensable for efficient development of Absorption, Distribution, Metabolism, Excretion, Toxicity-tailored structure–activity models; therefore reliable procedures for deriving log P from molecular structure are desirable. In the current work a range of various software log P predictors for estimation of the numerical lipophilic values for a set of cholic acid derivatives were employed and subsequently cross-compared with the experimental parameters. Thus, the empirical lipophilicity (RM) was compared with the corresponding log P characteristics calculated using alternative methods for deducing the lipophilic features. The mean values of the selected molecular descriptors that were averaged over the chosen calculation methods (consensus clog P) were subsequently correlated with the RM parameter. As an additional experiment, the iterative variable elimination partial least squares (IVE-PLS) methodology for an ensemble of descriptors retrieved from Dragon 6.0 software was applied for a set of drug transporters. To investigate the variations within the ensemble of cholic acid derivatives principal component analysis (PCA) and self-organizing neural network (SOM) procedures were used to visualize the major differences in the performance of drug promoters with respect to their lipophilic profile.
Molecules | 2017
Hana Pizova; Marketa Havelkova; Pavel Bobal; Sarka Stepankova; Tereza Kauerova; Andrzej Bak; Peter Kollar; Violetta Kozik; Michal Oravec; Ales Imramovsky; Josef Jampilek
Series of twenty-five benzyl (2S)-2-(arylcarbamoyl)pyrrolidine-1-carboxylates was prepared and completely characterized. All the compounds were tested for their in vitro ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), and the selectivity of compounds to individual cholinesterases was determined. Screening of the cytotoxicity of all the compounds was performed using a human monocytic leukaemia THP-1 cell line, and the compounds demonstrated insignificant toxicity. All the compounds showed rather moderate inhibitory effect against AChE; benzyl (2S)-2-[(2-chlorophenyl)carbamoyl]pyrrolidine-1-carboxylate (IC50 = 46.35 μM) was the most potent agent. On the other hand, benzyl (2S)-2-[(4-bromophenyl)-] and benzyl (2S)-2-[(2-bromophenyl)carbamoyl]pyrrolidine-1-carboxylates expressed anti-BChE activity (IC50 = 28.21 and 27.38 μM, respectively) comparable with that of rivastigmine. The ortho-brominated compound as well as benzyl (2S)-2-[(2-hydroxyphenyl)carbamoyl]pyrrolidine-1-carboxylate demonstrated greater selectivity to BChE. The in silico characterization of the structure–inhibitory potency for the set of proline-based carbamates considering electronic, steric and lipophilic properties was provided using comparative molecular surface analysis (CoMSA) and principal component analysis (PCA). Moreover, the systematic space inspection with splitting data into the training/test subset was performed to monitor the statistical estimators performance in the effort to map the probability-guided pharmacophore pattern. The comprehensive screening of the AChE/BChE profile revealed potentially relevant structural and physicochemical features that might be essential for mapping of the carbamates inhibition efficiency indicating qualitative variations exerted on the reaction site by the substituent in the 3′-/4′-position of the phenyl ring. In addition, the investigation was completed by a molecular docking study of recombinant human AChE.
Molecules | 2018
Iva Kapustikova; Andrzej Bak; Tomas Gonec; Jiri Kos; Violetta Kozik; Josef Jampilek
The evaluation of the lipophilic characteristics of biologically active agents is indispensable for the rational design of ADMET-tailored structure–activity models. N-Alkoxy-3-hydroxynaphthalene-2-carboxanilides, N-alkoxy-1-hydroxynaphthalene-2-carboxanilides, and N-alkoxy-2-hydroxynaphthalene-1-carboxanilides were recently reported as a series of compounds with antimycobacterial, antibacterial, and herbicidal activity. As it was found that the lipophilicity of these biologically active agents determines their activity, the hydro-lipophilic properties of all three series were investigated in this study. All 57 anilides were analyzed using the reversed-phase high-performance liquid chromatography method for the measurement of lipophilicity. The procedure was performed under isocratic conditions with methanol as an organic modifier in the mobile phase using an end-capped non-polar C18 stationary reversed-phase column. In the present study, a range of software lipophilicity predictors for the estimation of clogP values of a set of N-alkoxyphenylhydroxynaphthalenecarboxamides was employed and subsequently cross-compared with experimental parameters. Thus, the empirical values of lipophilicity (logk) and the distributive parameters (π) were compared with the corresponding in silico characteristics that were calculated using alternative methods for deducing the lipophilic features. To scrutinize (dis)similarities between the derivatives, a PCA procedure was applied to visualize the major differences in the performance of molecules with respect to their lipophilic profile, molecular weight, and violations of Lipinski’s Rule of Five.
Molecules | 2017
Pavel Mučaji; Atanas G. Atanasov; Andrzej Bak; Violetta Kozik; Karolina Sieron; Mark Olsen; Weidong Pan; Yazhou Liu; Shengchao Hu; Junjie Lan; Norbert Haider; Robert Musiol; Ján Vančo; Marc Diederich; Seungwon Ji; Jan Zitko; Dongdong Wang; Danica Agbaba; Katarina Nikolic; Slavica Oljačić; Jelica Vucicevic; Daniela Jezova; Anna Tsantili-Kakoulidou; Fotios Tsopelas; Constantinos Giaginis; Teresa Kowalska; Mieczysław Sajewicz; Jerzy Silberring; Przemyslaw Mielczarek; Marek Smoluch
The 46th EuroCongress on Drug Synthesis and Analysis (ECDSA-2017) was arranged within the celebration of the 65th Anniversary of the Faculty of Pharmacy at Comenius University in Bratislava, Slovakia from 5–8 September 2017 to get together specialists in medicinal chemistry, organic synthesis, pharmaceutical analysis, screening of bioactive compounds, pharmacology and drug formulations; promote the exchange of scientific results, methods and ideas; and encourage cooperation between researchers from all over the world. The topic of the conference, “Drug Synthesis and Analysis,” meant that the symposium welcomed all pharmacists and/or researchers (chemists, analysts, biologists) and students interested in scientific work dealing with investigations of biologically active compounds as potential drugs. The authors of this manuscript were plenary speakers and other participants of the symposium and members of their research teams. The following summary highlights the major points/topics of the meeting.
Molecules | 2018
Andrzej Bak; Violetta Kozik; Małgorzata Walczak; Justyna Fraczyk; Zbigniew J. Kaminski; Beata Kolesinska; Adam Smolinski; Josef Jampilek
The pharmacophore properties of a new series of potential purinoreceptor (P2X) inhibitors determined using a coupled neural network and the partial least squares method with iterative variable elimination (IVE-PLS) are presented in a ligand-based comparative study of the molecular surface by comparative molecular surface analysis (CoMSA). Moreover, we focused on the interpretation of noticeable variations in the potential selectiveness of interactions of individual inhibitor-receptors due to their physicochemical properties; therefore, the library of artificial dipeptide receptors (ADP) was designed and examined. The resulting library response to individual inhibitors was arranged in the array, preprocessed and transformed by the principal component analysis (PCA) and PLS procedures. A dominant absolute contribution to PC1 of the Glu attached to heptanoic gating acid and Phe bonded to the linker m-phenylenediamine/triazine scaffold was revealed by the PCA. The IVE-PLS procedure indicated the receptor systems with predominant Pro bonded to the linker and Glu, Gln, Cys and Val directly attached to the gating acid. The proposed comprehensive ligand-based and simplified structure-based methodology allows the in-depth study of the performance of peptide receptors against the tested set of compounds.
Molecules | 2017
Małgorzata Dołowy; Violetta Kozik; Andrzej Bak; Josef Jampilek; K. Barbusiński; Maciej Thomas; Alina Pyka-Pajak
A rapid, simple to use and low-cost thin-layer chromatographic procedure in normal phase system with densitometric detection at 246 nm was carefully validated according to the International Conference on Harmonisation (ICH) guidelines for assay of clobetasol propionate in topical solution containing clobetasol propionate in quantity 0.50 mg/mL. The adopted thin-layer chromatographic (TLC)-densitometric procedure could effectively separate clobetasol propionate from its related compound, namely clobetasol. It is linear for clobetasol propionate in the range of 0.188 ÷ 5 µg/spot. The limit of detection (LOD) and limit of quantification (LOQ) value is 0.061 and 0.186 µg/spot, respectively. Accuracy of proposed procedure was evaluated by recovery test. The mean recovery of studied clobetasol propionate ranges from 98.7 to 101.0%. The coefficient of variation (CV, %) obtained during intra-day and inter-day studies, which was less than 2% (0.40 ÷ 1.17%), confirms the precision of described method. The assay value of clobetasol propionate is consistent with the pharmacopoeial requirements. In conclusion, it can be suitable as a simple and economic procedure for routine quality control laboratories of clobetasol propionate in topical solution.
Fibres & Textiles in Eastern Europe | 2017
Maciej Thomas; K. Barbusiński; Katarzyna Kalemba; Paweł Jan Piskorz; Violetta Kozik; Andrzej Bąk
This article presents the possibility of using the classical Fenton process (Fe(II)/H2O2) to purify synthetic textile wastewater (COD = 1872 mg O2/dm, TOC = 660 mg/dm3) containing azo dye Anilan Blue GRL 250% (200 mg/dm3) and sodium lauryl sulphate (SLS) as anionic surfactant at a concentration of 95 mg/dm3. Model studies were carried out using RSM, obtaining a good fit of approximated values to experimental values (R2 = 0.9461 and Radj = 0.7379). For optimal process parameters (pH 3, Fe(II) 0.85 g/dm3, H2O2 14.5 g/dm3), complete decolourisation (<10 mg Pt/dm3) was achieved as well as a reduction in COD, TOC and SLS concentrations to 83%, 44% and 98%, respectively.