Violetta La Cono
National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Violetta La Cono.
The ISME Journal | 2011
Michail M. Yakimov; Violetta La Cono; Francesco Smedile; Thomas H DeLuca; Silvia Juárez; Sergio Ciordia; Marisol Fernández; Juan Pablo Albar; Manuel Ferrer; Peter N. Golyshin; Laura Giuliano
Mesophilic Crenarchaeota have recently been thought to be significant contributors to nitrogen (N) and carbon (C) cycling. In this study, we examined the vertical distribution of ammonia-oxidizing Crenarchaeota at offshore site in Southern Tyrrhenian Sea. The median value of the crenachaeal cell to amoA gene ratio was close to one suggesting that virtually all deep-sea Crenarchaeota possess the capacity to oxidize ammonia. Crenarchaea-specific genes, nirK and ureC, for nitrite reductase and urease were identified and their affiliation demonstrated the presence of ‘deep-sea’ clades distinct from ‘shallow’ representatives. Measured deep-sea dark CO2 fixation estimates were comparable to the median value of photosynthetic biomass production calculated for this area of Tyrrhenian Sea, pointing to the significance of this process in the C cycle of aphotic marine ecosystems. To elucidate the pivotal organisms in this process, we targeted known marine crenarchaeal autotrophy-related genes, coding for acetyl-CoA carboxylase (accA) and 4-hydroxybutyryl-CoA dehydratase (4-hbd). As in case of nirK and ureC, these genes are grouped with deep-sea sequences being distantly related to those retrieved from the epipelagic zone. To pair the molecular data with specific functional attributes we performed [14C]HCO3 incorporation experiments followed by analyses of radiolabeled proteins using shotgun proteomics approach. More than 100 oligopeptides were attributed to 40 marine crenarchaeal-specific proteins that are involved in 10 different metabolic processes, including autotrophy. Obtained results provided a clear proof of chemolithoautotrophic physiology of bathypelagic crenarchaeota and indicated that this numerically predominant group of microorganisms facilitate a hitherto unrecognized sink for inorganic C of a global importance.
Environmental Microbiology | 2011
Violetta La Cono; Francesco Smedile; Giovanni Bortoluzzi; Erika Arcadi; Giovanna Maimone; Enzo Messina; Mireno Borghini; Elvira Oliveri; Salvatore Mazzola; Stephan L'Haridon; Laurent Toffin; Lucrezia Genovese; Manuel Ferrer; Laura Giuliano; Peter N. Golyshin; Michail M. Yakimov
In September 2008, an expedition of the RV Urania was devoted to exploration of the genomic richness of deep hypersaline anoxic lakes (DHALs) located in the Western part of the Mediterranean Ridge. Approximately 40 nautical miles SE from Urania Lake, the presence of anoxic hypersaline lake, which we named Thetis, was confirmed by swath bathymetry profiling and through immediate sampling casts. The brine surface of the Thetis Lake is located at a depth of 3258 m with a thickness of ≈ 157 m. Brine composition was found to be thalassohaline, saturated by NaCl with a total salinity of 348‰, which is one of highest value reported for DHALs. Similarly to other Mediterranean DHALs, seawater-brine interface of Thetis represents a steep pycno- and chemocline with gradients of salinity, electron donors and acceptors and posseses a remarkable stratification of prokaryotic communities, observed to be more metabolically active in the upper interface where redox gradient was sharper. [(14) C]-bicarbonate fixation analysis revealed that microbial communities are sustained by sulfur-oxidizing chemolithoautotrophic primary producers that thrive within upper interface. Besides microaerophilic autotrophy, heterotrophic sulfate reduction, methanogenesis and anaerobic methane oxidation are likely the predominant processes driving the ecosystem of Thetis Lake.
Environmental Microbiology | 2012
Manuel Ferrer; Johannes Werner; Tatyana N. Chernikova; Rafael Bargiela; Lucía Fernández; Violetta La Cono; Jost Waldmann; Hanno Teeling; Olga V. Golyshina; Frank Oliver Glöckner; Michail M. Yakimov; Peter N. Golyshin
So far only little is known about the microbial ecology of Mediterranean deep-sea hypersaline anoxic lakes (DHALs). These brine lakes were formed by evaporite dissolution/brine seeps and are important model environments to provide insights into possible metabolisms and distributions of microorganisms on the early Earth. Our study on the Lake Thetis, a new thalassohaline DHAL located South-East of the Medriff Corridor, has revealed microbial communities of contrasting compositions with a high number of novel prokaryotic candidate divisions. The major finding of our present work is co-occurrence of at least three autotrophic carbon dioxide fixation pathways in the brine-seawater interface that are likely fuelled by an active ramified sulphur cycle. Genes for the reductive acetyl-CoA and reductive TCA pathways were also found in the brine suggesting that these pathways are operational even at extremely elevated salinities and that autotrophy is more important in hypersaline environments than previously assumed. Surprisingly, genes coding for RuBisCo were found in the highly reduced brine. Three types of sulphide oxidation pathways were found in the interface. The first involves a multienzyme Sox complex catalysing the complete oxidation of reduced sulphur compounds to sulphate, the second type recruits SQR sulphide:quinone reductase for oxidation of sulphide to elemental sulphur, which, in the presence of sulphide, could further be reduced by polysulphide reductases in the third pathway. The presence of the latter two allows a maximal energy yield from the oxidation of sulphide and at the same time prevents the acidification and the accumulation of S(0) deposits. Amino acid composition analysis of deduced proteins revealed a significant overrepresentation of acidic residues in the brine compared with the interface. This trait is typical for halophilic organisms as an adaptation to the brines extreme hypersalinity. This work presents the first metagenomic survey of the microbial communities of the recently discovered Lake Thetis whose brine constitutes one of saltiest water bodies ever reported.
Scientific Reports | 2013
Michail M. Yakimov; Violetta La Cono; Vladlen Z. Slepak; Gina La Spada; Erika Arcadi; Enzo Messina; Mireno Borghini; L. S. Monticelli; David Rojo; Coral Barbas; Olga V. Golyshina; Manuel Ferrer; Peter N. Golyshin; Laura Giuliano
Deep-sea hypersaline anoxic lakes (DHALs) of the Eastern Mediterranean represent some of the most hostile environments on our planet. We investigated microbial life in the recently discovered Lake Medee, the largest DHAL found to-date. Medee has two unique features: a complex geobiochemical stratification and an absence of chemolithoautotrophic Epsilonproteobacteria, which usually play the primary role in dark bicarbonate assimilation in DHALs interfaces. Presumably because of these features, Medee is less productive and exhibits reduced diversity of autochthonous prokaryotes in its interior. Indeed, the brine community almost exclusively consists of the members of euryarchaeal MSBL1 and bacterial KB1 candidate divisions. Our experiments utilizing cultivation and [14C]-assimilation, showed that these organisms at least partially rely on reductive cleavage of osmoprotectant glycine betaine and are engaged in trophic cooperation. These findings provide novel insights into how prokaryotic communities can adapt to salt-saturated conditions and sustain active metabolism at the thermodynamic edge of life.
Science | 2009
Ana Beloqui; María-Eugenia Guazzaroni; Florencio Pazos; José María Vieites; Marta Godoy; Olga V. Golyshina; Tatyana N. Chernikova; Agnes Waliczek; Rafael Silva-Rocha; Yamal Al-Ramahi; Violetta La Cono; Carmen Méndez; José A. Salas; Roberto Solano; Michail M. Yakimov; Kenneth N. Timmis; Peter N. Golyshin; Manuel Ferrer
Metabolite Arrays Methods suitable for the biochemical analysis of multiple metabolic pathways in mixed samples are in short supply. Beloqui et al. (p. 252) report a method to sample the global metabolic state of an organism or mixture of organisms using an array of more than 1500 metabolites linked to a glass slide. The substrates are linked to the plate so that the reaction of an enzyme with one of the metabolites releases a fluorescent dye, which allows sensitive detection of the enzymatic activity. From a sample with small numbers of a mixture of bacteria, the authors were able to collect DNA, amplify it in a host bacterium, and measure its encoded metabolic activity with the array. Furthermore, by coating the substrates on nanoparticles with a specially designed linker, the authors could trap and purify enzymes that reacted with the immobilized substrate. The metabolite array may be useful in the characterization of environmental samples, in diagnostic procedures, and in enzyme discovery. A microarray technique uses trapped, dye-associated metabolites to allow rapid global characterization of metabolic activity. We describe a sensitive metabolite array for genome sequence–independent functional analysis of metabolic phenotypes and networks, the reactomes, of cell populations and communities. The array includes 1676 dye-linked substrate compounds collectively representing central metabolic pathways of all forms of life. Application of cell extracts to the array leads to specific binding of enzymes to cognate substrates, transformation to products, and concomitant activation of the dye signals. Proof of principle was shown by reconstruction of the metabolic maps of model bacteria. Utility of the array for unsequenced organisms was demonstrated by reconstruction of the global metabolisms of three microbial communities derived from acidic volcanic pool, deep-sea brine lake, and hydrocarbon-polluted seawater. Enzymes of interest are captured on nanoparticles coated with cognate metabolites, sequenced, and their functions unequivocally established.
Environmental Microbiology | 2013
Violetta La Cono; Gina La Spada; Erika Arcadi; Francesco Placenti; Francesco Smedile; Gioacchino Ruggeri; Luigi Michaud; Carmen Raffa; Emilio De Domenico; Mario Sprovieri; Salvatore Mazzola; Lucrezia Genovese; Laura Giuliano; Vladlen Z. Slepak; Michail M. Yakimov
We used a combination of molecular and microbiological approaches to determine the activity, abundance and diversity of archaeal populations inhabiting meromictic saline Lake Faro (Messina, Italy). Analysis of archaeal 16S rRNA, amoA, accA and hbd genes and transcripts revealed that sub- and anoxic layers of Lake Faro are primarily inhabited by the organisms related to the clusters of Marine Group I.1a of Thaumarchaeota frequently recovered from oxygen-depleted marine ecosystems. These organisms dominated the metabolically active archaea down to the bottom of the lake, indicating their adaptation to recurrent changes in the levels of water column hypoxia. The upper microaerobic layer of Lake Faro redoxcline has the maximal rates of dark primary production much lower than those of other previously studied pelagic redoxclines, but comparable to the values of meso- and bathypelagic areas of Mediterranean Sea. Application of bacterial inhibitors, especially azide, significantly declined the CO2 fixation rates in the low interface and monimolimnion, whereas archaea-specific inhibitor had effect only in upper part of the redoxcline. Based on these findings, we hypothesize that dark bicarbonate fixation in suboxic zone of Lake Faro results mainly from archaeal activity which is affected by the predicted lack in oxygen in lower layers.
The ISME Journal | 2016
Dimitry Y. Sorokin; Ilya V. Kublanov; Sergei Gavrilov; David Rojo; Pawel Roman; Peter N. Golyshin; Vladlen Z. Slepak; Francesco Smedile; Manuel Ferrer; Enzo Messina; Violetta La Cono; Michail M. Yakimov
Archaea domain is comprised of many versatile taxa that often colonize extreme habitats. Here, we report the discovery of strictly anaerobic extremely halophilic euryarchaeon, capable of obtaining energy by dissimilatory reduction of elemental sulfur using acetate as the only electron donor and forming sulfide and CO2 as the only products. This type of respiration has never been observed in hypersaline anoxic habitats and is the first example of such metabolic capability in the entire Archaea domain. We isolated and cultivated these unusual organisms, selecting one representative strain, HSR2, for detailed characterization. Our studies including physiological tests, genome sequencing, gene expression, metabolomics and [14C]-bicarbonate assimilation assays revealed that HSR2 oxidized acetate completely via the tricarboxylic acid cycle. Anabolic assimilation of acetate occurred via activated glyoxylate bypass and anaplerotic carboxylation. HSR2 possessed sulfurtransferase and an array of membrane-bound polysulfide reductase genes, all of which were expressed during the growth. Our findings suggest the biogeochemical contribution of haloarchaea in hypersaline anoxic environments must be reconsidered.
Environmental Microbiology | 2014
Johannes Werner; Manuel Ferrer; Gurvan Michel; Alexander J. Mann; Sixing Huang; Silvia Juárez; Sergio Ciordia; Juan Pablo Albar; María Alcaide; Violetta La Cono; Michail M. Yakimov; André Antunes; Marco Taborda; Milton S. da Costa; Tran Hai; Frank Oliver Glöckner; Olga V. Golyshina; Peter N. Golyshin; Hanno Teeling
Euryarchaea from the genus Halorhabdus have been found in hypersaline habitats worldwide, yet are represented by only two isolates: Halorhabdus utahensis AX-2T from the shallow Great Salt Lake of Utah, and Halorhabdus tiamatea SARL4BT from the Shaban deep-sea hypersaline anoxic lake (DHAL) in the Red Sea. We sequenced the H. tiamatea genome to elucidate its niche adaptations. Among sequenced archaea, H. tiamatea features the highest number of glycoside hydrolases, the majority of which were expressed in proteome experiments. Annotations and glycosidase activity measurements suggested an adaptation towards recalcitrant algal and plant-derived hemicelluloses. Glycosidase activities were higher at 2% than at 0% or 5% oxygen, supporting a preference for low-oxygen conditions. Likewise, proteomics indicated quinone-mediated electron transport at 2% oxygen, but a notable stress response at 5% oxygen. Halorhabdus tiamatea furthermore encodes proteins characteristic for thermophiles and light-dependent enzymes (e.g. bacteriorhodopsin), suggesting that H. tiamatea evolution was mostly not governed by a cold, dark, anoxic deep-sea habitat. Using enrichment and metagenomics, we could demonstrate presence of similar glycoside hydrolase-rich Halorhabdus members in the Mediterranean DHAL Medee, which supports that Halorhabdus species can occupy a distinct niche as polysaccharide degraders in hypersaline environments.
Applied and Environmental Microbiology | 2014
Johannes Werner; Manuel Ferrer; Gurvan Michel; Alexander J. Mann; Sixing Huang; Silvia Juárez; Sergio Ciordia; Juan Pablo Albar; María Alcaide; Violetta La Cono; Michail M. Yakimov; André Antunes; Marco Taborda; Milton S. da Costa; Tran Hai; Frank Oliver Glöckner; Olga V. Golyshina; Peter N. Golyshin; Hanno Teeling
Euryarchaea from the genus Halorhabdus have been found in hypersaline habitats worldwide, yet are represented by only two isolates: Halorhabdus utahensis AX-2T from the shallow Great Salt Lake of Utah, and Halorhabdus tiamatea SARL4BT from the Shaban deep-sea hypersaline anoxic lake (DHAL) in the Red Sea. We sequenced the H. tiamatea genome to elucidate its niche adaptations. Among sequenced archaea, H. tiamatea features the highest number of glycoside hydrolases, the majority of which were expressed in proteome experiments. Annotations and glycosidase activity measurements suggested an adaptation towards recalcitrant algal and plant-derived hemicelluloses. Glycosidase activities were higher at 2% than at 0% or 5% oxygen, supporting a preference for low-oxygen conditions. Likewise, proteomics indicated quinone-mediated electron transport at 2% oxygen, but a notable stress response at 5% oxygen. Halorhabdus tiamatea furthermore encodes proteins characteristic for thermophiles and light-dependent enzymes (e.g. bacteriorhodopsin), suggesting that H. tiamatea evolution was mostly not governed by a cold, dark, anoxic deep-sea habitat. Using enrichment and metagenomics, we could demonstrate presence of similar glycoside hydrolase-rich Halorhabdus members in the Mediterranean DHAL Medee, which supports that Halorhabdus species can occupy a distinct niche as polysaccharide degraders in hypersaline environments.
Environmental Microbiology | 2010
Vincent Grossi; Michail M. Yakimov; Badr Al Ali; Yosmina Tapilatu; Philippe Cuny; Madeleine Goutx; Violetta La Cono; Laura Giuliano; C. Tamburini
A new piezotolerant alkane-degrading bacterium (Marinobacter hydrocarbonoclasticus strain #5) was isolated from deep (3475 m) Mediterranean seawater and grown at atmospheric pressure (0.1 MPa) and at 35 MPa with hexadecane as sole source of carbon and energy. Modification of the hydrostatic pressure influenced neither the growth rate nor the amount of degraded hexadecane (approximately 90%) during 13 days of incubation. However, the lipid composition of the cells sharply differed under both pressure conditions. At 0.1 MPa, M. hydrocarbonoclasticus #5 biosynthesized large amounts ( approximately 62% of the total cellular lipids) of hexadecane-derived wax esters (WEs), which accumulated in the cells under the form of individual lipid bodies. Intracellular WEs were also synthesized at 35 MPa, but their proportion was half that at 0.1 MPa. This lower WE content at high pressure was balanced by an increase in the total cellular phospholipid content. The chemical composition of WEs formed under both pressure conditions also strongly differed. Saturated WEs were preferentially formed at 0.1 MPa whereas diunsaturated WEs dominated at 35 MPa. This increase of the unsaturation ratio of WEs resembled the one classically observed for bacterial membrane lipid homeostasis. Remarkably, the unsaturation ratio of membrane fatty acids of M. hydrocarbonoclasticus grown at 35 MPa was only slightly higher than at 0.1 MPa. Overall, the results suggest that intracellular WEs and phospholipids play complementary roles in the physiological adaptation of strain #5 to different hydrostatic pressures.