Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Virginia E. Hawkins is active.

Publication


Featured researches published by Virginia E. Hawkins.


Journal of Neurophysiology | 2015

HCN channels contribute to serotonergic modulation of ventral surface chemosensitive neurons and respiratory activity

Virginia E. Hawkins; Joanna M. Hawryluk; Ana C. Takakura; Anastasios V. Tzingounis; Thiago S. Moreira; Daniel K. Mulkey

Chemosensitive neurons in the retrotrapezoid nucleus (RTN) provide a CO2/H(+)-dependent drive to breathe and function as an integration center for the respiratory network, including serotonergic raphe neurons. We recently showed that serotonergic modulation of RTN chemoreceptors involved inhibition of KCNQ channels and activation of an unknown inward current. Hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels are the molecular correlate of the hyperpolarization-activated inward current (Ih) and have a high propensity for modulation by serotonin. To investigate whether HCN channels contribute to basal activity and serotonergic modulation of RTN chemoreceptors, we characterize resting activity and the effects of serotonin on RTN chemoreceptors in vitro and on respiratory activity of anesthetized rats in the presence or absence of blockers of KCNQ (XE991) and/or HCN (ZD7288, Cs(+)) channels. We found in vivo that bilateral RTN injections of ZD7288 increased respiratory activity and in vitro HCN channel blockade increased activity of RTN chemoreceptors under control conditions, but this was blunted by KCNQ channel inhibition. Furthermore, in vivo unilateral RTN injection of XE991 plus ZD7288 eliminated the serotonin response, and in vitro serotonin sensitivity was eliminated by application of XE991 and ZD7288 or SQ22536 (adenylate cyclase blocker). Serotonin-mediated activation of RTN chemoreceptors was blocked by a 5-HT7-receptor blocker and mimicked by a 5-HT7-receptor agonist. In addition, serotonin caused a depolarizing shift in the voltage-dependent activation of Ih. These results suggest that HCN channels contribute to resting chemoreceptor activity and that serotonin activates RTN chemoreceptors and breathing in part by a 5-HT7 receptor-dependent mechanism and downstream activation of Ih.


eLife | 2017

Purinergic regulation of vascular tone in the retrotrapezoid nucleus is specialized to support the drive to breathe

Virginia E. Hawkins; Ana C. Takakura; Ashley Trinh; Milene R. Malheiros-Lima; Colin M Cleary; Ian C. Wenker; Todd Dubreuil; Elliot M Rodriguez; Mark T. Nelson; Thiago S. Moreira; Daniel K. Mulkey

Cerebral blood flow is highly sensitive to changes in CO2/H+ where an increase in CO2/H+ causes vasodilation and increased blood flow. Tissue CO2/H+ also functions as the main stimulus for breathing by activating chemosensitive neurons that control respiratory output. Considering that CO2/H+-induced vasodilation would accelerate removal of CO2/H+ and potentially counteract the drive to breathe, we hypothesize that chemosensitive brain regions have adapted a means of preventing vascular CO2/H+-reactivity. Here, we show in rat that purinergic signaling, possibly through P2Y2/4 receptors, in the retrotrapezoid nucleus (RTN) maintains arteriole tone during high CO2/H+ and disruption of this mechanism decreases the CO2ventilatory response. Our discovery that CO2/H+-dependent regulation of vascular tone in the RTN is the opposite to the rest of the cerebral vascular tree is novel and fundamentally important for understanding how regulation of vascular tone is tailored to support neural function and behavior, in this case the drive to breathe. DOI: http://dx.doi.org/10.7554/eLife.25232.001


Brain Structure & Function | 2017

Expression of Kir4.1 and Kir5.1 inwardly rectifying potassium channels in oligodendrocytes, the myelinating cells of the CNS

C. Brasko; Virginia E. Hawkins; I. Chacon De La Rocha; Arthur Butt

The inwardly rectifying K+ channel subtype Kir5.1 is only functional as a heteromeric channel with Kir4.1. In the CNS, Kir4.1 is localised to astrocytes and is the molecular basis of their strongly negative membrane potential. Oligodendrocytes are the specialised myelinating glia of the CNS and their resting membrane potential provides the driving force for ion and water transport that is essential for myelination. However, little is known about the ion channel profile of mature myelinating oligodendrocytes. Here, we identify for the first time colocalization of Kir5.1 with Kir4.1 in oligodendrocytes in white matter. Immunolocalization with membrane-bound Na+/K+-ATPase and western blot of the plasma membrane fraction of the optic nerve, a typical CNS white matter tract containing axons and the oligodendrocytes that myelinate them, demonstrates that Kir4.1 and Kir5.1 are colocalized on oligodendrocyte cell membranes. Co-immunoprecipitation provides evidence that oligodendrocytes and astrocytes express a combination of homomeric Kir4.1 and heteromeric Kir4.1/Kir5.1 channels. Genetic knock-out and shRNA to ablate Kir4.1 indicates plasmalemmal expression of Kir5.1 in glia is largely dependent on Kir4.1 and the plasmalemmal anchoring protein PSD-95. The results demonstrate that, in addition to astrocytes, oligodendrocytes express both homomeric Kir4.1 and heteromeric Kir4.1/Kir5.1 channels. In astrocytes, these channels are essential to their key functions of K+ uptake and CO2/H+ chemosensation. We propose Kir4.1/Kir5.1 channels have equivalent functions in oligodendrocytes, maintaining myelin integrity in the face of large ionic shifts associated with action potential propagation along myelinated axons.


Neurobiology of Disease | 2013

TASK-1 channels in oligodendrocytes: A role in ischemia mediated disruption

Virginia E. Hawkins; Arthur Butt

Oligodendrocytes are the myelinating cells of the CNS and, like neurons, are highly sensitive to ischemic damage. However, the mechanisms underlying cytotoxicity in oligodendrocytes during hypoxic/ischemic episodes are not fully understood. TASK-1 is a K+ leak channel that mediates hypoxic depolarisation in neurons. The expression and function of TASK-1 in oligodendrocytes had not previously been addressed. In this study, we investigate the expression of TASK-1 in oligodendrocytes and its role in white matter ischemic damage. Expression of TASK-1 in oligodendrocytes was investigated in the mouse brain using immunostaining. TASK-1 channel function was identified by established pharmacological and electrophysiological strategies, using the whole-cell patch clamp technique in cell cultures of oligodendrocytes from the optic nerve, a typical white matter tract. The role of TASK-1 in hypoxia was examined in isolated intact optic nerves subjected to oxygen glucose deprivation (OGD). Oligodendrocytes are strongly immunopositive for TASK-1 throughout the brain. Patch-clamp identified functional TASK-1-like leak currents in oligodendrocytes using two recognised means of inhibiting TASK-1, decreasing extracellular pH to 6.4 and exposure to the TASK-1 selective inhibitor anandamide. Incubation of optic nerves with methanandamide, a non-hydrolysable form of anandamide, significantly protected oligodendrocytes against hypoxic disruption and death in OGD. Our data demonstrate for the first time that oligodendrocytes express functional TASK-1 channels and provide compelling evidence they contribute to oligodendrocyte damage in hypoxia. Since oligodendrocyte damage is a key factor in ischemic episodes, TASK-1 may provide a potential therapeutic target in stroke and white matter disease.


Human Molecular Genetics | 2016

MeCP2 deficiency results in robust Rett-like behavioural and motor deficits in male and female rats

Kelsey C. Patterson; Virginia E. Hawkins; Kara M. Arps; Daniel K. Mulkey; Michelle L. Olsen

Since the identification of MECP2 as the causative gene in the majority of Rett Syndrome (RTT) cases, transgenic mouse models have played a critical role in our understanding of this disease. The use of additional mammalian RTT models offers the promise of further elucidating critical early mechanisms of disease as well as providing new avenues for translational studies. We have identified significant abnormalities in growth as well as motor and behavioural function in a novel zinc-finger nuclease model of RTT utilizing both male and female rats throughout development. Male rats lacking MeCP2 (Mecp2ZFN/y) were noticeably symptomatic as early as postnatal day 21, with most dying by postnatal day 55, while females lacking one copy of Mecp2 (Mecp2ZFN/+) displayed a more protracted disease course. Brain weights of Mecp2ZFN/y and Mecp2ZFN/+ rats were significantly reduced by postnatal day 14 and 21, respectively. Early motor and breathing abnormalities were apparent in Mecp2ZFN/y rats, whereas Mecp2ZFN/+ rats displayed functional irregularities later in development. The large size of this species will provide profound advantages in the identification of early disease mechanisms and the development of appropriately timed therapeutics. The current study establishes a foundational basis for the continued utilization of this rat model in future RTT research.


The Journal of Physiology | 2015

Molecular underpinnings of ventral surface chemoreceptor function: focus on KCNQ channels

Daniel K. Mulkey; Virginia E. Hawkins; Joanna M. Hawryluk; Ana C. Takakura; Thiago S. Moreira; Anastasios V. Tzingounis

Central chemoreception is the mechanism by which CO2/H+‐sensitive neurons (i.e. chemoreceptors) regulate breathing in response to changes in tissue CO2/H+. Neurons in the retrotrapezoid nucleus (RTN) directly regulate breathing in response to changes in tissue CO2/H+ and function as a key locus of respiratory control by integrating information from several respiratory centres, including the medullary raphe. Therefore, chemosensitive RTN neurons appear to be critically important for maintaining breathing, thus understanding molecular mechanisms that regulate RTN chemoreceptor function may identify therapeutic targets for the treatment of respiratory control disorders. We have recently shown that KCNQ (Kv7) channels in the RTN are essential determinants of spontaneous activity ex vivo, and downstream effectors for serotonergic modulation of breathing. Considering that loss of function mutations in KCNQ channels can cause certain types of epilepsy including those associated with sudden unexplained death in epilepsy (SUDEP), we propose that dysfunctions of KCNQ channels may be one cause for epilepsy and respiratory problems associated with SUDEP. In this review, we will summarize the role of KCNQ channels in the regulation of RTN chemoreceptor function, and suggest that these channels represent useful therapeutic targets for the treatment of respiratory control disorders.


Neurochemical Research | 2017

Metabotropic Glutamate Receptors Protect Oligodendrocytes from Acute Ischemia in the Mouse Optic Nerve

Arthur Butt; Ilaria Vanzulli; Maria Papanikolaou; Irene Chacon De La Rocha; Virginia E. Hawkins

Studies by Bruce Ransom and colleagues have made a major contribution to show that white matter is susceptible to ischemia/hypoxia. White matter contains axons and the glia that support them, notably myelinating oligodendrocytes, which are highly vulnerable to ischemic-hypoxic damage. Previous studies have shown that metabotropic GluRs (mGluRs) are cytoprotective for oligodendrocyte precursor cells and immature oligodendrocytes, but their potential role in adult white matter was unresolved. Here, we report that group 1 mGluR1/5 and group 2 mGluR3 subunits are expressed in optic nerves from mice aged postnatal day (P)8–12 and P30–35. We demonstrate that activation of group 1 mGluR protects oligodendrocytes against oxygen-glucose deprivation (OGD) in developing and young adult optic nerves. In contrast, group 2 mGluR are shown to be protective for oligodendrocytes against OGD in postnatal but not young adult optic nerves. The cytoprotective effect of group 1 mGluR requires activation of PKC, whilst group 2 mGluR are dependent on negatively regulating adenylyl cyclase and cAMP. Our results identify a role for mGluR in limiting injury of oligodendrocytes in developing and young adult white matter, which may be useful for protecting oligodendrocytes in neuropathologies involving excitoxicity and ischemia/hypoxia.


The Journal of Neuroscience | 2017

Epilepsy-associated KCNQ2 channels regulate multiple intrinsic properties of Layer 2/3 pyramidal neurons

Zachary Niday; Virginia E. Hawkins; Heun Soh; Daniel K. Mulkey; Anastasios V. Tzingounis


Archive | 2016

activitysurface chemosensitive neurons and respiratory HCN channels contribute to serotonergic modulation of

S. Moreira; Daniel K. Mulkey; Virginia E. Hawkins; Joanna M. Hawryluk; Ana C. Takakura; Anastasios V. Tzingounis


The FASEB Journal | 2015

Astrocyte Kir4.1 Channels Contribute to Central Respiratory Drive

Virginia E. Hawkins; Daniel K. Mulkey

Collaboration


Dive into the Virginia E. Hawkins's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arthur Butt

University of Portsmouth

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Todd Dubreuil

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

C. Brasko

University of Portsmouth

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge