Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Virginia Kriho is active.

Publication


Featured researches published by Virginia Kriho.


Proceedings of the National Academy of Sciences of the United States of America | 2000

Colocalization of integrin receptors and reelin in dendritic spine postsynaptic densities of adult nonhuman primate cortex

Miguel A. Rodriguez; Christine Pesold; Wen S. Liu; Virginia Kriho; Alessandro Guidotti; George D. Pappas; Erminio Costa

The expression of telencephalic reelin (Reln) and glutamic acid decarboxylase mRNAs and their respective cognate proteins is down-regulated in postmortem brains of schizophrenia and bipolar disorder patients. To interpret the pathophysiological significance of this finding, immunoelectron microscopic experiments are required, but these cannot be carried out in postmortem human brains. As an alternative, we carried out such experiments in the cortex of rats and nonhuman primates. We found that Reln is expressed predominantly in layer I of both cortices and is localized to bitufted (double-bouquet), horizontal, and multipolar gamma-aminobutyric acid-ergic interneurons, which secrete Reln into extracellular matrix. Reln secretion is mediated by a constitutive mechanism that depends on the expression of a specific signal peptide present in the Reln carboxy-terminal domain. Extracellular matrix Reln is found to aggregate in proximity of postsynaptic densities expressed in apical dendrite spines, which include also the alpha(3) subunit of integrin receptors. Most pyramidal neurons of various cortical layers express the mouse-disabled 1 (Dab1) protein, which, after phosphorylation by a soluble tyrosine kinase, functions as an adapter protein, probably mediating a modulation of cytoskeleton protein expression. We hypothesize that the decrease of neuropil and dendritic spine density reported to exist in the neocortex of psychiatric patients may be related to a down-regulation of Reln-integrin interactions and the consequent decrease of cytoskeleton protein turnover.


Journal of Neurocytology | 2001

Reelin in the extracellular matrix and dendritic spines of the cortex and hippocampus: a comparison between wild type and heterozygous reeler mice by immunoelectron microscopy.

George D. Pappas; Virginia Kriho; Christine Pesold

Reelin is a glycoprotein (∼400 kDa) secreted by GABAergic neurons into the extracellular matrix of the neocortex and hippocampus as well as other areas of adult rodent and nonhuman primate brains. Recent findings indicate that the heterozygote reeler mouse (haploinsufficient for the reeler gene) shares several neurochemical and behavioral abnormalities with schizophrenia and bipolar disorder with mania. These include (1) a downregulation of both reelin mRNA and the translated proteins, (2) a decrease in the number of dendritic spines in cortical and hippocampal neurons, (3) a concomitant increase in the packing density of cortical pyramidal neurons, and (4) an age-dependent decrease in prepulse inhibition of startle. Interestingly, the heterozygous reeler mouse does not exhibit the unstable gait or the neuroanatomy characteristic of the null mutant reeler mouse. Immunocytochemical studies of the expression of reelin in mice have been primarily limited to light microscopy. In this study we present new immunoelectron microscopy data that delineates the subcellular localization of reelin in the cortex and hippocampus of the wild-type mouse, and compares these results to reelin expression in the heterozygous reeler mouse. In discontinuous areas of cortical layers I and II and the inner blade area of the dentate gyrus of the wild type mouse, extracellular reelin is associated with dendrites and dendritic spine postsynaptic specializations. Similar associations have been detected in the CA1 stratum oriens and other areas of the hippocampus. In the hippocampus, reelin expression is more expansive and more widespread than in cortical layers I and II. In contrast, extracellular reelin immunoreactivity is greatly diminished in all areas examined in the heterozygous reeler mouse. However, some cell bodies of GABAergic neurons in the cortex and hippocampus demonstrate an increased accumulation of reelin in the Golgi and endoplasmic reticulum. We suggest that in the heterozygous reeler mouse a downregulation of reelin biosynthesis results in a decreased rate of secretion into the extracellular space. This inhibits dendritic spine maturation and plasticity and leads to dissociation of dendritic postsynaptic density integrity and atrophy of spines. We speculate that the haploinsufficient reeler mouse may provide a model for future studies of the role of reelin, as it may be related to psychosis vulnerability.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Reelin function in neural stem cell biology

H. M. Kim; T. Qu; Virginia Kriho; P. Lacor; Neil R. Smalheiser; George D. Pappas; Alessandro Guidotti; Erminio Costa; Sugaya K

In the adult brain, neural stem cells (NSC) must migrate to express their neuroplastic potential. The addition of recombinant reelin to human NSC (HNSC) cultures facilitates neuronal retraction in the neurospheroid. Because we detected reelin, α3-integrin receptor subunits, and disabled-1 immunoreactivity in HNSC cultures, it is possible that integrin-mediated reelin signal transduction is operative in these cultures. To investigate whether reelin is important in the regulation of NSC migration, we injected HNSCs into the lateral ventricle of null reeler and wild-type mice. Four weeks after transplantation, we detected symmetrical migration and extensive neuronal and glial differentiation of transplanted HNSCs in wild-type, but not in reeler mice. In reeler mice, most of the injected HNSCs failed to migrate or to display the typical differentiation pattern. However, a subpopulation of transplanted HNSCs expressing reelin did show a pattern of chain migration in the reeler mouse cortex. We also analyzed the endogenous NSC population in the reeler mouse using bromodeoxyuridine injections. In reeler mice, the endogenous NSC population in the hippocampus and olfactory bulb was significantly reduced compared with wild-type mice; in contrast, endogenous NSCs expressed in the subventricular zonewere preserved. Hence, it seems likely that the lack of endogenous reelin may have disrupted the migration of the NSCs that had proliferated in the SVZ. We suggest that a possible inhibition of NSC migration in psychiatric patients with a reelin deficit may be a potential problem in successful NSC transplantation in these patients.


Journal of Neurocytology | 1993

Immunotyping of radial glia and their glial derivatives during development of the rat spinal cord

Hsi-Yuan Yang; Norman Lieska; D. Shao; Virginia Kriho; George D. Pappas

SummaryThe differentiation of glia in the central nervous system is not well understood. A major problem is the absence of an objective identification system for involved cells, particularly the early-appearing radial glia. The intermediate filament structural proteins vimentin and glial fibrillary acidic protein have been used to define the early and late stages, respectively, of astrocyte development. However, because of the non-specificity of vimentin and the temporal overlap in expression patterns of both proteins, it is difficult to refine our view of the process. This is especially true of the early differentiation events involving radial glia. Using the developmentally-expressed intermediate filament-associated protein IFAP-70/280 kD in conjunction with vimentin and glial fibrillary acidic protein markers, a comprehensive investigation of this problem was undertaken using immunofluorescence microscopy of developing rat spinal cord (E13-P28 plus adult). The phenotypes of the cells were defined on the basis of their immunologic composition with respect to IFAP-70/280 kD (I), vimentin (V) and GFAP (G). A definitive immunotype for radial glia was established, viz, I+/V+/G−; thus reliance upon strictly morphological criteria for this early developmental cell was no longer necessary. Based upon the immunotypes of the cells involved, four major stages of macroglial development were delineated: (1) radial glia (I+/V+/G−); (2) macroglial progenitors (I+/V+/G+); (3) immature macroglia (I−/V+/G+); and (4) mature astrocytes (I−/V+/G+ primarily in white matter and I−/V−/G+, the predominant type in gray matter). It is of interest to note that the cells of the floor plate were distinguished from radial glia by their lack of IFAP-70/280 kD immunoreactivity. Introduction of the IFAP-70/280 kD marker has therefore provided a more refined interpretation of the various differentiation stages from radial glia to mature astrocytes.


Experimental Neurology | 1997

A subpopulation of reactive astrocytes at the immediate site of cerebral cortical injury

Hsi-Yuan Yang; Norman Lieska; Virginia Kriho; Ching-Ming Wu; George D. Pappas

We have identified an early-appearing intermediate filament-associated protein (IFAP-70/280 kDa) in radial glia and their immediate derivatives. This IFAP is absent in the adult CNS. In this study, we examined the reexpression of this early glial differentiation trait in rat reactive astrocytes induced by stab injury of the cerebrum. Double-label immunofluorescence microscopy demonstrated that by 36 h postlesion, IFAP-70/280 kDa was present in a few GFAP-positive astrocytes in the area adjacent to the wound. As the gliotic reaction progressed, the number of IFAP-positive reactive astrocytes increased and by 5-6 days postlesion, IFAP-70/280 kDa was present in most of the hypertrophied astrocytes in tissue immediately adjacent to the wound. By 8 days postlesion, while the number of IFAP-negative reactive astrocytes away from the wound diminished, the IFAP-containing reactive astrocytes close to the wound persisted. Concurrently, they began to change from a stellate form to an elongated shape, with their longitudinal axes radiating from the wound. The immunoreactivity of this IFAP started to diminish at 20 days postlesion, and by 30 days postlesion, it was not observed in the remaining gliotic cells. These results demonstrate that reactive astrocytes induced by stab-wound injury can be divided into two subtypes: persistent IFAP-70/280 kDa-containing cells which are close to the wound in the area of the glial scar and transient IFAP-70/280 kDa-negative cells which are farther from the wound. The reappearance of IFAP-70/280 kDa also suggests that some reactive astrocytes have the capacity to recapitulate early developmental stages.


Molecular and Chemical Neuropathology | 1994

Proteins of the intermediate filament cytoskeleton as markers for astrocytes and human astrocytomas

HsI.YClAN Yang; Norman Lieska; Deren Shao; Virginia Kriho; George D. Pappas

There is a pressing need for a more accurate system of classifying human astrocytomas, one that is based on morphologic characteristics and that could also make use of distinctive biochemical markers. However, little is known about the phenotypic characteristics of astrocytomas. Recent studies have shown that the expression of proteins comprising the intermediate filament (IF) cytoskeleton of astrocytic cells is developmentally regulated. It is our hypothesis that this changing protein profile can be used as the basis of a system for clearly and objectively classifying astrocytomas. A spectrum of human astrocytomas has been examined by immunofluorescence microscopy employing antibodies to several IF structural subunit proteins (GFAP, vimentin, and keratins) and an IF-associated protein IFAP-300kDa. These proteins occupy unique temporal niches in the cytogenesis of the astrocytic cells: keratins in cells of the neuroectoderm; vimentin and IFAP-300kDa in radial glia and immature glia; GFAP in mature astrocytes; and vimentin in some mature astrocytes. In agreement with previous reports, our immunofluorescence studies have revealed both GFAP and vimentin in all astrocytoma specimens. Two new observations, however, are of particular interest: IFAP-300kDa is detectable in all astrocytic tumors, and the proportion of keratin-containing cells present in the astrocytomas is in direct relationship to the degree of the malignancy. Because IFAP-300kDa is not present in either normal mature or reactive astrocytes, this protein appears to represent a specific marker of transformed (malignant) astrocytes. If it is presumed that higher malignancy grades represent the most dedifferentiated cellular state of the astrocytes, the presence of keratin-containing cells is not totally unexpected, given the ectodermal (epithelial) origin of the CNS. Specific developmentally regulated proteins of the IF cytoskeleton thus appear to hold great potential as diagnostic markers of astrocytomas and as tools for investigating the biology of these tumors.


Neurological Research | 2003

Immunocytochemical localization of reelin in the olfactory bulb of the heterozygous reeler mouse: An animal model for schizophrenia

George D. Pappas; Virginia Kriho; Wen Sheng Liu; Lucio Tremolizzo; Giovanni Lugli; John Larson

Abstract Because heterozygous reeler (HR) mice share some abnormal traits with schizophrenic patients, and schizophrenia is often accompanied by impairment of olfactory function, this study examines reelin in the olfactory bulb of the HR mouse. In the WT mouse, reelin immunoreactivity is found in the extracellular matrix, and in the cytoplasm of olfactory nerve fibers, GABAergic interneurons, and glutamatergic mitral cells. Western blot analysis reveals that reelin immunoreactivity in the HR mouse is reduced by 45% compared to WT mouse. This is especially evident in the glomerular GABAergic interneurons. In WT mitral cells, reelin is found in discrete clumps near the axon hillock and within the axon. In the HR mouse, reelin axonal staining is diffuse and densely packed. In the rostral migratory stream of the HR mouse, immunolabeling shows an accumulation of reelin-containing neuronal precursors, apparently unable to shift from tangential to radial migration. These observations indicate that there is a downregulation of reelin in the HR mouse and suggest that secretion of reelin may be compromised. Further studies of the HR mouse may provide a new basis for understanding the role of reelin in the adult CNS, especially as it may relate to schizophrenia.


Virchows Archiv | 1997

Keratin expression in astrocytomas: an immunofluorescent and biochemical reassessment

Virginia Kriho; Hsi-Yuan Yang; Joseph R. Moskal; Omar Skalli

Abstract Several studies have shown that immunoenzymatic staining of formalin-fixed, paraffin-embedded astrocytomas with keratin antibodies frequently yields positive labelling, but no biochemical evidence of keratin expression in astrocytomas has been reported. We have investigated the presence of keratin in astrocytoma and normal brain tissues both by immunofluorescence on frozen sections and by 1D and 2D immunoblotting using seven monoclonal antibodies that, collectively, recognize most keratin polypeptides. Four of these antibodies did not stain neural tissues by immunofluorescence and were also negative by immunoblotting. The remaining three keratin antibodies stained normal brain and/or a high proportion of astrocytomas. Two of these three antibodies only stained glial fibrillary acidic protein (GFAP)-positive cells, while the third only stained GFAP-negative cells. 1D and 2D immunoblotting analysis showed that positive immunofluorescence staining of normal brain and/or astrocytomas seen with these three keratin antibodies was due to cross-reactivity with non-keratin proteins, such as GFAP. These results demonstrate that, contrary to earlier suggestions, keratin polypeptides are not frequently expressed in astrocytomas. Our studies also emphasize that keratin antibodies should be used cautiously for the differential diagnosis of undifferentiated gliomas from tumours of non-glial origin.


Journal of Neurocytology | 1988

Fine structural localization of Ca2+-ATPase activity at the frog neuromuscular junction

George D. Pappas; Virginia Kriho

SummaryCa2+-ATPase activity has been shown to be associated with the nerve terminal plasma membrane at the frog neuromuscular junction. Using a modification of the Wachstein-Meisel procedure for localization of phosphatases, a dense reaction product forms at the neuronal plasma membrane/Schwann cell interface. It has been determined that this reaction product is associated with the plasma membrane of the nerve terminal and not the plasma membrane of the Schwann cell. No ATPase activity is demonstrated at the presynaptic portion of the plasma membrane facing the synaptic gap. When a preparation is denervated, a Schwann cell process moves into the space previously occupied by the nerve. There is no ATPase activity associated with the Schwann cell plasma membrane. Conversely, when the Schwann cell is selectively injured, dense reaction product continues to be associated with the nerve terminal plasma membrane. There is some indication that this ATPase activity is dependent on the presence of Ca2+ and Mg2+. Incubation in the calmodulin inhibitor, R24571, shows little inhibition of labelling.


Neurological Research | 2003

Proliferation of a subpopulation of reactive astrocytes following needle-insertion lesion in rat

Chung-Ying Lee; George D. Pappas; Virginia Kriho; Bu Miin Huang; Hsi-Yuan Yang

Abstract It is well known that traumatic injuries of the CNS induce a gliotic reaction, characterized by the presence of reactive astrocytes. Reactive astrocytes exhibit enhanced expression of the astrocyte-specific intermediate filament, glial fibrillary acidic protein (GFAP), hypertrophy, and thickened processes. Recently, we have demonstrated that injuries of the CNS induce a re-expression of an embryonic intermediate filament-associated protein, IFAP-70/280kDa. Based on IFAP-70/280kDa immunolabeling, we have shown that reactive astrocytes, activated by stab-wound injury, can be divided into two major groups: 1. persistent IFAP+/GFAP+ cells which are close to the wound in the area of glial scar, and 2. transient IFAP-/GFAP+ cells which are farther from the wound. In this study, we use BrdU incorporation to examine proliferation in these two groups of reactive astrocytes induced by stab injury of the rat cerebrum. Triple/double-label immunofluorescence microscopy was performed using antibodies to IFAP-70/280kDa, GFAP, and BrdU. The results showed that BrdU+ reactive astrocytes (GFAP+) were always IFAB-70/280kDa+ as well. However, not all IFAP+ reactive astrocytes are BrdU+. BrdU+ signal was not observed in any IFAP- reactive astrocytes. At five days post-lesion, IFAP+ reactive astrocytes were increasing in the area of the wound (0-50 µm from the wound edge), but had reached a peak in the proximal area (50-800 µm away from the wound edge). At eight days post-lesion, IFAP+ reactive astrocytes achieved the highest percentage in the wound area. At the same time, BrdU-containing reactive astrocytes occupied an area closer to the wound. By 20 days post-lesion, following the formation of the gliotic scar at the stab-wound, a few IFAP+/GFAP+ cells still persisted. BrdU-containing reactive astrocytes were only observed in the scar. These results indicate that many IFAP+ reactive astrocytes close to the wound, in contrast to the IFAP- ones farther from the wound, appear to regain their proliferative potential to increase in number and participate in the formation of the gliotic scar.

Collaboration


Dive into the Virginia Kriho's collaboration.

Top Co-Authors

Avatar

George D. Pappas

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Hsi-Yuan Yang

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Norman Lieska

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Alessandro Guidotti

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Erminio Costa

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Marietta R. Issidorides

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Neil R. Smalheiser

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

P. Lacor

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Christine Pesold

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

D. Shao

University of Illinois at Chicago

View shared research outputs
Researchain Logo
Decentralizing Knowledge