Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Virginia L. Vega is active.

Publication


Featured researches published by Virginia L. Vega.


Journal of Immunology | 2008

Hsp70 Translocates into the Plasma Membrane after Stress and Is Released into the Extracellular Environment in a Membrane-Associated Form that Activates Macrophages

Virginia L. Vega; Monica Rodríguez-Silva; Tiffany Frey; Mathias Gehrmann; Juan Carlos Diaz; Claudia Steinem; Gabriele Multhoff; Nelson Arispe; Antonio De Maio

Heat shock proteins (hsps) are intracellular chaperones that play a key role in the recovery from stress. Hsp70, the major stress-induced hsp, has been found in the extracellular medium and is capable of activating immune cells. The mechanism involved in Hsp70 release is controversial because this protein does not present a consensual secretory signal. In this study, we have shown that Hsp70 integrates into artificial lipid bilayer openings of ion conductance pathways. In addition, this protein was found inserted into the plasma membrane of cells after stress. Hsp70 was released into the extracellular environment in a membrane-associated form, sharing the characteristics of this protein in the plasma membrane. Extracellular membranes containing Hsp70 were at least 260-fold more effective than free recombinant protein in inducing TNF-α production as an indicator of macrophage activation. These observations suggest that Hsp70 translocates into the plasma membrane after stress and is released within membranous structures from intact cells, which could act as a danger signal to activate the immune system.


Journal of Cellular Physiology | 2002

Gap junctions, homeostasis, and injury

Antonio De Maio; Virginia L. Vega; Jorge E. Contreras

Gap junctions (Gj) play an important role in the communication between cells of many tissues. They are composed of channels that permit the passage of ions and low molecular weight metabolites between adjacent cells, without exposure to the extracellular environment. These pathways are formed by the interaction between two hemichannels on the surface of opposing cells. These hemichannels are formed by the association of six identical subunits, named connexins (Cx), which are integral membrane proteins. Cell coupling via Gj is dependent on the specific pattern of Cx gene expression. This pattern of gene expression is altered during several pathological conditions resulting in changes of cell coupling. The regulation of Cx gene expression is affected at different levels from transcription to post translational processes during injury. In addition, Gj cellular communication is regulated by gating mechanisms. The alteration of Gj communication during injury could be rationalized by two opposite theories. One hypothesis proposes that the alteration of Gj communication attenuates the spread of toxic metabolites from the injured area to healthy organ regions. The alternative proposition is that a reduction of cellular communication reduces the loss of important cellular metabolisms, such as ATP and glucose.


Shock | 2004

Age and caloric restriction diets are confounding factors that modify the response to lipopolysaccharide by peritoneal macrophages in C57BL/6 mice.

Virginia L. Vega; Rafael de Cabo; Antonio De Maio

Aging is the result of several detrimental changes that lead to a decrease in homeostasis, an increase in the incidence of degenerative diseases, and death. A caloric-restricted diet (CR), which consists of a significant reduction in calorie intake (40%) without malnutrition, has been shown to delay the onset of age-related diseases and pathologies and to extend life span. The aims of this study were to assess the effects of aging and CR on lipopolysaccharide (LPS)-dependant cytokine production by peritoneal macrophages (PM&phis;s). Resident naïve PM&phis;s were isolated from 2- to 24-month-old male C57BL/6 mice and were stimulated with Escherichia coli LPS (100 ng/mL) for 1 to 5 h in culture conditions. A linear decrease in the production of LPS-induced tumor necrosis factor α (TNF-α) and interleukin (IL) 10 was observed with age. LPS-induced IL-6 and IL-1β levels were also reduced with age, but in a nonlinear fashion. Expression of CD14, the major receptor for LPS, on the PM&phis; surface was also observed to decline with age. Moreover, TNF-α production by PM&phis;s was reduced in mice undergoing the two different CR diets of limited daily feeding and intermittent fasting, as compared with ad libitum-fed mice. The results of this study add the new variables age and diet to the paradigm proposing that the response to LPS is modulated by multiple components, including genetic background and sex.


Journal of Immunology | 2005

Increase in phagocytosis after geldanamycin treatment or heat shock: role of heat shock proteins.

Virginia L. Vega; Antonio De Maio

The response to injury is activated at the systemic and cellular levels. At the systemic level, phagocytosis plays a key role in controlling infections and clearing necrotic and apoptotic cells. The expression of heat shock proteins (Hsp), which is a well-conserved process, is a major component of cellular response to stress. This study investigated the relationship between Hsps and phagocytosis. An increase in the phagocytosis of opsonized bacteria particles and latex beads was observed upon incubation of murine macrophages with geldanamycin (GA), a specific inhibitor of the Hsp90 family of proteins. The effect of GA on phagocytosis was blocked by coincubation with inhibitors of transcription (actinomycin D) or translation (cycloheximide), suggesting that gene expression was required. Because expression of Hsps has been observed after GA treatment, the effect of heat shock on phagocytosis was investigated. Similar to GA treatment, heat shock resulted in an actinomycin D-sensitive elevation of phagocytosis, which suggests that Hsps are involved. The increase in phagocytosis after GA treatment was not due to increased binding of opsonized particles to their respective receptors on the macrophage surface or to elevated oxidative stress. However, it was correlated with a rapid polymerization of actin in proximity to the plasma membrane. These results suggest that Hsps play a role in the modulation of the phagocytic process, which is part of the stress response.


Shock | 2000

Xanthine oxidase released from reperfused hind limbs mediate kupffer cell activation, neutrophil sequestration, and hepatic oxidative stress in rats subjected to tourniquet shock.

Virginia L. Vega; Lorena Mardones; Mafalda Maldonado; Sandra Nicovani; Verónica Manríquez; Jorge Roa; Peter H. Ward

We have shown previously that rats subjected to tourniquet shock develop an acute form of remote organ injury of the liver that is both Kupffer cell (KC) and polymorphonuclear (PMN) leukocyte dependent. Circulating plasma xanthine oxidase (XO) has been shown to be responsible for the development of endothelial dysfunction and for remote organ injury of the lung and intestine after ischemia-reperfusion protocols. We now hypothesize that XO is released from rat hind limbs upon reperfusion and that it is responsible for KC and PMN leukocyte activation in this shock model. Our results show that about 30% of rat gastrocnemius muscle xanthine dehydrogenase (XD) is converted to XO during the 5-h tourniquet period and that it is released into the femoral vein within 10 min of reperfusion. Total muscle xanthine oxidoreductase activity (XO + XD) decreases within 30 min of reperfusion and is paralleled by a corresponding increase in femoral vein lactic dehydrogenase. In addition, liver tissue XO increases significantly within 30 min of reperfusion without a corresponding conversion of endogenous XD. Conversion of hepatic XD becomes evident 60 min after reperfusion is initiated, as does XO, and alanine aminotransferase (ALT) release into the hepatic vein, presumably from damaged hepatocytes as a consequence of oxidative stress. Tissue myeloperoxidase activity also increases significantly after the 60-min reperfusion period. That XO mediates KC and PMN activation is supported by the following observations: a) the close relationships between plasma XO and the time courses of tumor necrosis factor-alpha TNFalpha release into the hepatic vein and colloidal carbon clearance by KCs; b) that colloidal carbon clearance, TNFalpha and ALT release, loss of tissue free thiols, lipid peroxidation (TBARS), and liver infiltration by PMN neutrophils can also be induced by the administration of exogenous XO to normal rats; and c) pretreatment of rats with allopurinol inhibits KC activation and liver leukocyte infiltration. These results suggest that XO, released from the ischemic limb on reperfusion, is taken up by the liver were it mediates KC and PMN neutrophil activation and thus contributes to the development of multiple system organ failure after hind limb reperfusion.


Cell Stress & Chaperones | 2010

A new feature of the stress response: increase in endocytosis mediated by Hsp70

Virginia L. Vega; Wisler Charles; Antonio De Maio

The expression of heat shock proteins (HSP) is a conserved cellular response to a variety of stresses. These proteins have been found to refold denatured polypeptides and stabilize critical cellular processes. In this study, we introduce a new component of the stress response: the increase of receptor-mediated uptake of macromolecules from the external environment. We observed that endocytosis of transferrin, which is involved in the delivery of iron to the cell, was increased after stress induced by heat shock or after incubation with inhibitors of Hsp90 function. In both cases, the increase in endocytosis was reverted by inhibition of transcription, suggesting that gene expression is required. Transfection of cells with Hsp70 gene or inhibition of its expression by siRNA confirmed the role of this HSP in the increase of endocytosis. The mechanism for the enhancement of transferrin uptake was related to an accelerated internalization of the ligand–receptor complex as well as an increase in receptor recycling. These observations constitute a new paradigm for the cellular protection induced by HSP.


Shock | 1998

Inhibition of nitric oxide synthesis aggravates hepatic oxidative stress and enhances superoxide dismutase inactivation in rats subjected to tourniquet shock

Virginia L. Vega; Mafalda Maldonado; Lorena Mardones; Verónica Manríquez; Ennio Vivaldi; Jorge Roa; Peter H. Ward

ABSTRACT The role of nitric oxide (NO) on liver oxidative stress and tissue injury in rats subjected to tourniquet shock was investigated. This shock model differs from others in that injury is a consequence of remote organ damage. Liver oxidative stress becomes evident after hind limb reperfusion, as evidenced by the loss of total tissue thiols; by increases in tissue oxidized glutathione (GSSG), lipid peroxidation (LPO), plasma aminotransferases (alanine aminotransferase (ALT) and (aspartate aminotransferase (AST)), and plasma nitrites; and by a 36% loss in total superoxide dismutase (SOD) activity. Portal blood flow is reduced by 54.1 % after 2 h of hind limb reperfusion. Inhibition of NO synthesis with N±-nitro-L-arginine methyl ester or L-arginine methyl ester increased mean arterial blood pressure; further reduced portal blood flow; and aggravated liver injury as assessed by further loss in total thiols, increased LPO and GSSG content, and further increases in plasma ALT and AST. Total plasma nitrites were lower than in control animals, and total tissue SOD activity decreased by more than 80%. Treatment with the NO donor sodium nitroprusside reverted the decrease in portal blood flow and also reverted tissue thiol loss, LPO, and GSSG increases, as well as the loss of ALT and AST to plasma and of SOD activity to levels comparable to untreated control shock animals. As expected, plasma nitrites were greater than in tourniquet control animals. These data support the hypothesis that endogenous NO formation protects the rat liver from the consequences of oxidative stress elicited by hind limb reperfusion in rats subjected to tourniquet shock.


Journal of Surgical Research | 2012

Tumor necrosis factor expression is ameliorated after exposure to an acidic environment

Julia Grabowski; Daniel E. Vazquez; Todd W. Costantini; David M. Cauvi; Wisler Charles; Stephen W. Bickler; Mark A. Talamini; Virginia L. Vega; Raul Coimbra; Antonio De Maio

BACKGROUND It has been well established that laparoscopic surgery presents several clinical benefits, including reduced pain and a shorter hospital stay. These effects have been associated with a decrease in the inflammatory response. Previous studies have demonstrated that reduced inflammation after laparoscopic surgery is the product of carbon dioxide insufflation, which decreases peritoneal pH. The objective of this study was to investigate the cellular and molecular mechanisms responsible for the reduced response after exposure to acidic environments. MATERIALS AND METHODS A murine macrophage line (J744) was incubated in culture medium at pH 6.0 or pH 7.4 for 3 h at 37°C. Then, cells were stimulated with lipopolysaccharide (LPS) at pH 7.4, the expression of TNF-α (qRT-PCR or enzyme-linked immunosorbent assay (ELISA) and intracellular pH were measured. In addition, CD14 and Toll-like receptor 4 expression and NF-κB nuclear translocation were analyzed. RESULTS A significant decrease in LPS-induced TNF-α expression levels was observed in cells pre-incubated at pH 6.0 in comparison with cells at neutral pH conditions. This decrease in TNF-α levels was not associated with a reduction in cell surface expression of CD14 and Toll-like receptor 4. Exposure to an extracellular acidic environment resulted in a reduction of IκB phosphorylation and NF-κB nuclear translocation, secondary to a significant drop in cytosolic pH. CONCLUSIONS These observations provide a potential mechanism for the reduced expression of TNF-α after exposure to low extracellular pH, which may be related to acidification after CO(2) insufflation during laparoscopic surgery. In addition, extracellular acidic pH environments could emerge as an important regulator of macrophage function.


Journal of Surgical Research | 2008

Acidification enhances peritoneal macrophage phagocytic activity.

Julia Grabowski; Virginia L. Vega; Mark A. Talamini; Antonio De Maio

BACKGROUND Laparoscopic surgery is currently used in an array of diverse clinical situations, including cases with potential bacterial contamination. Previous studies have shown that CO2 insufflation during laparoscopic procedures modulates the immune response due to the acidification of the peritoneum. In the present study, we investigated whether exposure of macrophages to an acidic environment, such as that produced by CO2 insufflation, could affect phagocytosis, which is the fundamental process for bacterial clearance. MATERIALS AND METHODS A murine peritoneal macrophage line (J774) was pre-incubated at pH levels of 6.0 or 7.4 for 3 h at 37 degrees C and returned to neutral pH (7.4). Phagocytosis was evaluated by incubation with fluorescein isothiocyanate-conjugated IgG-opsonized bacterial particles, IgG-opsonized fluorescent latex beads, and non-opsonized fluorescent latex beads at 37 degrees C, pH 7.4. The intensity of the internalized signal was measured by using a fluorometer. RESULTS Pre-incubation of macrophages at a pH of 6.0 resulted in a significant increase of phagocytic activity of opsonized particles. However, it did not change the uptake of non-opsonized particles. This effect was due to the internalization process since there were no differences in foreign particle binding of cells exposed to acidic or neutral pH levels. CONCLUSIONS This study demonstrates that environmental acidification increases the phagocytosis of opsonized particles by macrophages. These results suggest that CO2 insufflation during laparoscopic surgery may be beneficial for the clearance of pathogens, particularly in cases where there is a high risk of potential intra-abdominal infections.


Journal of Molecular Medicine | 2014

Activation of the stress response in macrophages alters the M1/M2 balance by enhancing bacterial killing and IL-10 expression

Virginia L. Vega; Laura E. Crotty Alexander; Wisler Charles; John H. Hwang; Victor Nizet; Antonio De Maio

Macrophages (Mϕs) play an important role in the inflammatory response during injury by participating in the removal of injurious stimuli, such as bacteria, and promoting tissue healing to restore homeostasis. Mϕs can acquire distinct functional phenotypes along a spectrum between two opposite stages (M1/M2) during activation. In the present study, we induced a stress response in Mϕs via heat shock (HS) and found that it incurred an increase in phagocytosis (1.6-fold, P < 0.05) and bacterial killing (2.8-fold, P < 0.01). Upon heat stress activation, Mϕs respond to group B Streptococcus (GBS) infection with lower levels of pro-inflammatory cytokines, TNF-α (2.25-fold, P < 0.01), IL-6 (7-fold, P < 0.001), and inducible nitric oxide synthase (iNOS) (2.22-fold, P < 0.05), but higher levels of the anti-inflammatory cytokine IL-10 (3.9-fold, P < 0.01). Stressed Mϕs exposed to GBS display rapid phagosome maturation, increased extracellular trap (ET) formation and elevated cathelicidin antimicrobial peptide expression (2.5-fold, P < 0.001). These findings are consistent with a heretofore uncharacterized Mϕ activation state formed in response to stress, associated with secretion of large quantities of anti-inflammatory mediators and redirection of antimicrobial mechanisms to NADPH-oxidase-independent pathways. This “friendly activation” of Mϕs is characterized by increased bactericidal activity and more rapid and controlled resolution of the inflammatory response.Key MessagesMacrophages form a dual pro-bactericidal and anti-inflammatory state.Stress in the setting of infection triggers friendly activation in macrophages.Heat shock plus infection increases macrophage bactericidal activity.Heat shock plus infection increases macrophage extracellular trap formation.Heat shock plus infection increases macrophage production of cathelicidin and IL-10.

Collaboration


Dive into the Virginia L. Vega's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julia Grabowski

Children's Memorial Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wisler Charles

University of California

View shared research outputs
Top Co-Authors

Avatar

David M. Cauvi

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manuel B. Torres

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Mazen I. Bedri

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Nelson Arispe

Uniformed Services University of the Health Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge