Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Virginie Bito is active.

Publication


Featured researches published by Virginie Bito.


International Journal of Cardiology | 2015

Cardiac atrial appendage stem cells engraft and differentiate into cardiomyocytes in vivo: A new tool for cardiac repair after MI.

Yanick Fanton; Boris Robic; Jean-Luc Rummens; Annick Daniëls; Severina Windmolders; Leen Willems; Luc Jamaer; Jasperina Dubois; Eric Bijnens; Nic Heuts; Kristof Notelaers; Rik Paesen; Marcel Ameloot; Urbain Mees; Virginie Bito; Jeroen Declercq; Karen Hensen; Remco Koninckx; Marc Hendrikx

BACKGROUND This study assessed whether autologous transplantation of cardiac atrial appendage stem cells (CASCs) preserves cardiac function after myocardial infarction (MI) in a minipig model. METHODS AND RESULTS CASCs were isolated from right atrial appendages of Göttingen minipigs based on high aldehyde dehydrogenase activity and expanded. MI was induced by a 2h snare ligation of the left anterior descending coronary artery. Upon reperfusion, CASCs were intramyocardially injected under NOGA guidance (MI-CASC, n=10). Non-transplanted pigs (MI, n=8) received sham treatment. 3D electromechanical mapping (EMM) and cardiac MRI were performed to assess left ventricular (LV) function. MI pigs developed LV dilatation at 2 months (2M), while in the MI-CASC group volumes remained stable. Global LV ejection fraction decreased by 16 ± 8% in MI animals vs 3 ± 10% in MI-CASC animals and regional wall thickening in border areas was better preserved in the MI-CASC group. EMM showed decreased viability and wall motion in the LV for both groups POST-MI, whereas at 2M these parameters only improved in the MI-CASC. Substantial cell retention was accompanied by cardiomyogenic differentiation in 98±1% of the transplanted CASCs, which functionally integrated. Second harmonic generation microscopy confirmed the formation of mature sarcomeres in transplanted CASCs. Absence of cardiac arrhythmias indicated the safety of CASC transplantation. CONCLUSION CASCs preserve cardiac function by extensive engraftment and cardiomyogenic differentiation. Our data indicate the enormous potential of CASCs in myocardial repair.


International Journal of Cardiology | 2016

Cross-linking versus RAGE: How do high molecular weight advanced glycation products induce cardiac dysfunction?

Dorien Deluyker; Vesselina Ferferieva; Jean-Paul Noben; Quirine Swennen; Annelies Bronckaers; Ivo Lambrichts; Jean-Michel Rigo; Virginie Bito

BACKGROUND Several clinical and experimental studies have demonstrated that advanced glycation end products (AGEs) are associated with adverse cardiac outcome. Growing evidence shows that high molecular weight AGEs (HMW-AGEs) might be as important as the characterized low molecular weight AGEs. To date, the role of HMW-AGEs in the pathogenesis of cardiac remodeling remains unknown. In this study, we investigated whether HMW-AGEs are involved in cardiac dysfunction. METHODS Healthy rats were daily ip injected with 20mg/kg BSA-derived HMW-AGEs or, as a control, unmodified BSA, during 6 weeks. Cardiac function was assessed with echocardiography. Plasma levels of glucose, AGEs and soluble RAGE (sRAGE) were measured. AGEs, RAGE and lysyl oxidase (LOX) expression were determined by western blot. RESULTS After 6 weeks, animals displayed a sustained increase in circulating total AGEs without hyperglycemia. HMW-AGEs injections induced cardiac dysfunction characterized by wall hypertrophy, increased heart sphericity, reduced strain and strain rate with preserved ejection fraction. Plasma sRAGE levels were significantly higher compared to control and correlated significantly with decreased strain. RAGE expression, TNF-α and IL-6 remained unchanged. Finally, HMW-AGEs induced prominent cardiac fibrosis associated with an increased LOX expression. CONCLUSION Our data demonstrate that rather than via a specific activation of RAGE, the deleterious effects of HMW-AGEs are likely mediated via an increased collagen cross-linking responsible for the observed cardiac stiffness. Additionally, we show that in the setting of elevated HMW-AGEs, increased sRAGE levels are markers of altered cardiac function.


Current Medicinal Chemistry | 2016

From Bone Marrow to Cardiac Atrial Appendage Stem Cells for Cardiac Repair: A Review

Marc Hendrikx; Yanick Fanton; Leen Willems; Annick Daniëls; Jeroen Declercq; Severina Windmolders; Karen Hensen; Remco Koninckx; Luc Jamaer; Jasperina Dubois; Dagmara Dilling-Boer; Jos Vandekerkhof; Filip Hendrikx; Eric Bijnens; Nick Heuts; Boris Robic; Virginie Bito; Marcel Ameloot; Paul Steels; Jean-Luc Rummens

Traditionally the heart is considered a terminally differentiated organ. However, at the beginning of this century increased mitotic activity was reported in ischemic and idiopathic dilated cardiomyopathy hearts, compared to healthy controls, underscoring the potential of regeneration after injury. Due to the presence of adult stem cells in bone marrow and their purported ability to differentiate into other cell lineages, this cell population was soon estimated to be the most suited candidate for cardiac regeneration. Clinical trials with autologous bone marrow-derived mononuclear cells, using either an intracoronary or direct intramyocardial injection approach consistently showed only minor improvement in global left ventricular ejection fraction. This was explained by their limited cardiomyogenic differentiation potential. To obtain more convincing improvement in cardiac function, based on true myocardial regeneration, the focus of research has shifted towards resident cardiac progenitor cells. Several isolation procedures have been described: the c-kit surface marker was the first to be used, however experimental research has clearly shown that c-kit+ cells only marginally contribute to regeneration post myocardial infarction. Sphere formation was used to isolate the so-called cardiosphere derived cells (CDC), and also in this cell population cardiomyogenic differentiation is a rare event. Recently a new type of stem cells derived from atrial tissue (cardiac atrial stem cells - CASCs) was identified, based on the presence of the enzyme aldehyde dehydrogenase (ALDH). Those cells significantly improve both regional and global LV ejection fraction, based on substantial engraftment and consistent differentiation into mature cardiomyocytes (98%).


International Journal of Cardiology | 2015

Exercise improves cardiac function and attenuates insulin resistance in Dahl salt-sensitive rats

An L.M. Stevens; Vesselina Ferferieva; Virginie Bito; Inez Wens; Kenneth Verboven; Dorien Deluyker; Annemie Voet; Joke Vanhoof; Paul Dendale; Bert O. Eijnde

BACKGROUND The development of heart failure (HF) secondary to hypertension is a complex process related to a series of physiological and molecular factors including glucose dysregulation. The overall objective of this study was to investigate whether exercise training could improve cardiac function and insulin resistance in a rat model of hypertensive HF. METHODS Seven week old Dahl salt-sensitive rats received either 8% NaCl (n = 30) or 0.3% NaCl (n = 18) diet. After a 5-week diet, animals were randomly assigned to exercise training (treadmill running at 18 m/min, 5% inclination for 60 min, 5 days/week) or kept sedentary for 6 additional weeks. 2D echocardiography was used to calculate left ventricular (LV) dimensions, volumes and global functional parameters. LV global deformation parameters were measured with speckle tracking echocardiography. Insulin resistance was assessed using 1h oral glucose tolerance testing. RESULTS High salt diet led to cardiac hypertrophy and HF, characterized by increased wall thicknesses and LV volumes as well as reduced deformation parameters. In addition, high salt diet was associated with the development of insulin resistance. Exercise training improved cardiac function, reduced the extent of interstitial fibrosis and reduced insulin levels 60 min post-glucose administration. CONCLUSIONS Even if not fully reversed, exercise training in HF animals improved cardiac function and insulin resistance. Adjusted modalities of exercise training might offer new insights not only as a preventive strategy, but also as a treatment for HF patients.


Scientific Reports | 2017

Pyridoxamine improves survival and limits cardiac dysfunction after MI

Dorien Deluyker; Vesselina Ferferieva; Ronald B. Driesen; Maxim Verboven; Ivo Lambrichts; Virginie Bito

Advanced glycation end products (AGEs) play a key role in the progression of heart failure. Whether treatments limiting AGEs formation would prevent adverse left ventricular remodeling after myocardial infarction (MI) remain unknown. We investigated whether pyridoxamine (PM) could limit adverse cardiac outcome in MI. Rats were divided into MI, MI + PM and Sham. Echocardiography and hemodynamic parameters were used to assess cardiac function 8 weeks post-surgery. Total interstitial collagen, collagen I and collagen III were quantified using Sirius Red and polarized light microscopy. PM improved survival following LAD occlusion. Pre-treatment with PM significantly decreased the plasma AGEs levels. MI rats treated with PM displayed reduced left ventricular end-diastolic pressure and tau compared to untreated MI rats. Deformation parameters were also improved with PM. The preserved diastolic function was related to the reduced collagen content, in particular in the highly cross-linked collagen type I, mainly in the peri-infarct region, although not via TGF-β1 pathway. Our data indicate that PM treatment prevents the increase in AGEs levels and reduces collagen levels in a rat model of MI, resulting in an improved cardiac phenotype. As such, therapies targeting formation of AGEs might be beneficial in the prevention and/or treatment of maladaptive remodeling following MI.


International Journal of Cardiology | 2016

Possibilities and limitations for co-transplantation of cardiac atrial appendage stem cells and mesenchymal stem cells for myocardial repair

Yanick Fanton; Boris Robic; Jean-Luc Rummens; Annick Daniëls; Severina Windmolders; Leen Willems; Luc Jamaer; Jasperina Dubois; Eric Bijnens; Nic Heuts; Kristof Notelaers; Rik Paesen; Marcel Ameloot; Urbain Mees; Virginie Bito; Jeroen Declercq; Karen Hensen; Remco Koninckx; Marc Hendrikx

[Fanton, Yanick; Rummens, Jean-Luc; Daniels, Annick; Windmolders, Severina; Willems, Leen; Declercq, Jeroen; Hensen, Karen; Koninckx, Remco] Jessa Hosp, Lab Expt Hematol, Hasselt, Belgium. [Fanton, Yanick; Robic, Boris; Rummens, Jean-Luc; Windmolders, Severina; Willems, Leen; Notelaers, Kristof; Paesen, Rik; Ameloot, Marcel; Bito, Virginie; Declercq, Jeroen; Hensen, Karen; Koninckx, Remco; Hendrikx, Marc] Hasselt Univ, Fac Med & Life Sci, Hasselt, Belgium. [Robic, Boris; Mees, Urbain; Hendrikx, Marc] Jessa Hosp, Dept Cardiothorac Surg, Hasselt, Belgium. [Jamaer, Luc; Dubois, Jasperina] Jessa Hosp, Dept Cardiac Anesthesia, Hasselt, Belgium. [Bijnens, Eric; Heuts, Nic] Jessa Hosp, Dept Radiol, MRI Unit, Hasselt, Belgium. [Notelaers, Kristof; Paesen, Rik; Ameloot, Marcel; Bito, Virginie] Hasselt Univ, Biomed Res Inst, Hasselt, Belgium.


Journal of Biomedical Optics | 2015

On the interpretation of second harmonic generation intensity profiles of striated muscle

Rik Paesen; Sophie Smolders; Inez Wens; Kristof Notelaers; José Manolo de Hoyos Vega; Virginie Bito; Bert O. Eijnde; Dominique Hansen; Marcel Ameloot

Abstract. Recently, a supramolecular model was developed for predicting striated skeletal muscle intensity profiles obtained by label-free second harmonic generation (SHG) microscopy. This model allows for a quantitative determination of the length of the thick filament antiparallel range or M-band (M), and results in M=0.12  μm for single-band intensity profiles when fixing the A-band length (A) to A=1.6  μm, a value originating from electron microscopy (EM) observations. Using simulations and experimental data sets, we showed that the objective numerical aperture (NA) and the refractive index (RI) mismatch (Δn=n2ω−nω) between the illumination wave (ω) and the second harmonic wave (2ω) severely affect the simulated sarcomere intensity profiles. Therefore, our recovered filament lengths did not match with those observed by EM. For an RI mismatch of Δn=0.02 and a moderate illumination NA of 0.8, analysis of single-band SHG intensity profiles with freely adjustable A- and M-band sizes yielded A=1.40±0.04  μm and M=0.07±0.05  μm for skeletal muscle. These lower than expected values were rationalized in terms of the myosin density distribution along the myosin thick filament axis. Our data provided new and practical insights for the application of the supramolecular model to study SHG intensity profiles in striated muscle.


Journal of Nutritional Biochemistry | 2018

Western diet given to healthy rats mimics the human phenotype of diabetic cardiomyopathy

Maxim Verboven; Dorien Deluyker; Vesselina Ferferieva; Ivo Lambrichts; Dominique Hansen; Bert O. Eijnde; Virginie Bito


European Heart Journal | 2017

P1463The origin of diabetes: high-sugar diet to induce diabetic cardiomyopathy in rats

M. Verboven; D. Deluyker; Dominique Hansen; B.O. Eijnde; Virginie Bito


Archive | 2016

Pyridoxamine treatment improves diastolic function in a rat model of chronic myocardial infarction

Vesselina Ferferieva; Dorien Deluyker; Maxim Verboven; Virginie Bito

Collaboration


Dive into the Virginie Bito's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Inez Wens

University of Hasselt

View shared research outputs
Top Co-Authors

Avatar

Jasperina Dubois

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge