Virginie Boreux
ETH Zurich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Virginie Boreux.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Virginie Boreux; Cheppudira G. Kushalappa; Philippe Vaast; Jaboury Ghazoul
Crop productivity is improved by ecosystem services, including pollination, but this should be set in the context of trade-offs among multiple management practices. We investigated the impact of pollination services on coffee production, considering variation in fertilization, irrigation, shade cover, and environmental variables such as rainfall (which stimulates coffee flowering across all plantations), soil pH, and nitrogen availability. After accounting for management interventions, bee abundance improved coffee production (number of berries harvested). Some management interventions, such as irrigation, used once to trigger asynchronous flowering, dramatically increased bee abundance at coffee trees. Others, such as the extent and type of tree cover, revealed interacting effects on pollination and, ultimately, crop production. The effects of management interventions, notably irrigation and addition of lime, had, however, far more substantial positive effects on coffee production than tree cover. These results suggest that pollination services matter, but managing the asynchrony of flowering was a more effective tool for securing good pollination than maintaining high shade tree densities as pollinator habitat. Complex interactions across farm and landscape scales, including both management practices and environmental conditions, shape pollination outcomes. Effective production systems therefore require the integrated consideration of management practices in the context of the surrounding habitat structure. This paper points toward a more strategic use of ecosystem services in agricultural systems, where ecosystem services are shaped by the coupling of management interventions and environmental variables.
Journal of Applied Ecology | 2015
Lucas A. Garibaldi; Ignasi Bartomeus; Riccardo Bommarco; Alexandra M. Klein; Saul A. Cunningham; Marcelo A. Aizen; Virginie Boreux; Michael P. D. Garratt; Luísa G. Carvalheiro; Claire Kremen; Carolina L. Morales; Christof Schüepp; Natacha P. Chacoff; Breno Magalhães Freitas; Vesna Gagic; Andrea Holzschuh; Björn K. Klatt; Kristin M. Krewenka; Smitha Krishnan; Margaret M. Mayfield; Iris Motzke; Mark Otieno; Jessica D. Petersen; Simon G. Potts; Taylor H. Ricketts; Maj Rundlöf; Amber R. Sciligo; Palatty Allesh Sinu; Ingolf Steffan-Dewenter; Hisatomo Taki
Understanding the relationships between trait diversity, species diversity and ecosystem functioning is essential for sustainable management. For functions comprising two trophic levels, trait matching between interacting partners should also drive functioning. However, the predictive ability of trait diversity and matching is unclear for most functions, particularly for crop pollination, where interacting partners did not necessarily co-evolve. World-wide, we collected data on traits of flower visitors and crops, visitation rates to crop flowers per insect species and fruit set in 469 fields of 33 crop systems. Through hierarchical mixed-effects models, we tested whether flower visitor trait diversity and/or trait matching between flower visitors and crops improve the prediction of crop fruit set (functioning) beyond flower visitor species diversity and abundance. Flower visitor trait diversity was positively related to fruit set, but surprisingly did not explain more variation than flower visitor species diversity. The best prediction of fruit set was obtained by matching traits of flower visitors (body size and mouthpart length) and crops (nectar accessibility of flowers) in addition to flower visitor abundance, species richness and species evenness. Fruit set increased with species richness, and more so in assemblages with high evenness, indicating that additional species of flower visitors contribute more to crop pollination when species abundances are similar.Synthesis and applications. Despite contrasting floral traits for crops world-wide, only the abundance of a few pollinator species is commonly managed for greater yield. Our results suggest that the identification and enhancement of pollinator species with traits matching those of the focal crop, as well as the enhancement of pollinator richness and evenness, will increase crop yield beyond current practices. Furthermore, we show that field practitioners can predict and manage agroecosystems for pollination services based on knowledge of just a few traits that are known for a wide range of flower visitor species. Despite contrasting floral traits for crops world-wide, only the abundance of a few pollinator species is commonly managed for greater yield. Our results suggest that the identification and enhancement of pollinator species with traits matching those of the focal crop, as well as the enhancement of pollinator richness and evenness, will increase crop yield beyond current practices. Furthermore, we show that field practitioners can predict and manage agroecosystems for pollination services based on knowledge of just a few traits that are known for a wide range of flower visitor species. Editors Choice
PLOS ONE | 2016
Michael P. D. Garratt; Tom D. Breeze; Virginie Boreux; Michelle T. Fountain; Megan Mckerchar; S.M. Webber; Duncan J. Coston; N. Jenner; Robin Dean; Duncan Westbury; Jacobus C. Biesmeijer; Simon G. Potts
Insect pollination underpins apple production but the extent to which different pollinator guilds supply this service, particularly across different apple varieties, is unknown. Such information is essential if appropriate orchard management practices are to be targeted and proportional to the potential benefits pollinator species may provide. Here we use a novel combination of pollinator effectiveness assays (floral visit effectiveness), orchard field surveys (flower visitation rate) and pollinator dependence manipulations (pollinator exclusion experiments) to quantify the supply of pollination services provided by four different pollinator guilds to the production of four commercial varieties of apple. We show that not all pollinators are equally effective at pollinating apples, with hoverflies being less effective than solitary bees and bumblebees, and the relative abundance of different pollinator guilds visiting apple flowers of different varieties varies significantly. Based on this, the taxa specific economic benefits to UK apple production have been established. The contribution of insect pollinators to the economic output in all varieties was estimated to be £92.1M across the UK, with contributions varying widely across taxa: solitary bees (£51.4M), honeybees (£21.4M), bumblebees (£18.6M) and hoverflies (£0.7M). This research highlights the differences in the economic benefits of four insect pollinator guilds to four major apple varieties in the UK. This information is essential to underpin appropriate investment in pollination services management and provides a model that can be used in other entomolophilous crops to improve our understanding of crop pollination ecology.
PeerJ | 2018
Ádám Kőrösi; Viktor Markó; Anikó Kovács-Hostyánszki; László Somay; Ákos Varga; Zoltán Elek; Virginie Boreux; Alexandra-Maria Klein; Rita Földesi; András Báldi
Climate change is altering the phenology of trophically linked organisms, leading to increased asynchrony between species with unknown consequences for ecosystem services. Although phenological mismatches are reported from several ecosystems, experimental evidence for altering multiple ecosystem services is hardly available. We examined how the phenological shift of apple trees affected the abundance and diversity of pollinators, generalist and specialist herbivores and predatory arthropods. We stored potted apple trees in the greenhouse or cold store in early spring before transferring them into orchards to cause mismatches and sampled arthropods on the trees repeatedly. Assemblages of pollinators on the manipulated and control trees differed markedly, but their overall abundance was similar indicating a potential insurance effect of wild bee diversity to ensure fruit set in flower-pollinator mismatch conditions. Specialized herbivores were almost absent from manipulated trees, while less-specialized ones showed diverse responses, confirming the expectation that more specialized interactions are more vulnerable to phenological mismatch. Natural enemies also responded to shifted apple tree phenology and the abundance of their prey. While arthropod abundances either declined or increased, species diversity tended to be lower on apple trees with shifted phenology. Our study indicates novel results on the role of biodiversity and specialization in plant-insect mismatch situations.
Current opinion in insect science | 2018
Alexandra-Maria Klein; Virginie Boreux; Felix Fornoff; Anne-Christine Mupepele; Gesine Pufal
Wild and managed bees provide pollination services to both crops and wild plants, and a variety of other services from which humans benefit. We summarize the most important and recent findings on bees as providers of provisioning, regulating and cultural ecosystem services. With comprehensive literature searches, we first identified ten important bee species for global pollination of crops, which include wild and managed honey bees, bumble bees, orchard-, cucumber- and longhorn bees. We second summarized bee-dependent ecosystem services to show how bees substantially contribute to food security, medical resources, soil formation or spiritual practices, highlighting their wide range of benefits for human well-being and to identify future research needs.
Science | 2013
Lucas A. Garibaldi; Ingolf Steffan-Dewenter; Rachael Winfree; Marcelo A. Aizen; Riccardo Bommarco; Saul A. Cunningham; Claire Kremen; Luísa G. Carvalheiro; Lawrence D. Harder; Ohad Afik; Ignasi Bartomeus; Faye Benjamin; Virginie Boreux; Daniel P. Cariveau; Natacha P. Chacoff; Jan H. Dudenhöffer; Breno Magalhães Freitas; Jaboury Ghazoul; Sarah S. Greenleaf; Juliana Hipólito; Andrea Holzschuh; Brad G. Howlett; Rufus Isaacs; Steven K. Javorek; Christina M. Kennedy; Kristin M. Krewenka; Smitha Krishnan; Yael Mandelik; Margaret M. Mayfield; Iris Motzke
Agriculture, Ecosystems & Environment | 2013
Virginie Boreux; Smitha Krishnan; Kushalappa G. Cheppudira; Jaboury Ghazoul
Biotropica | 2009
Julia Born; Virginie Boreux; Michael J. Lawes
Biotropica | 2009
Virginie Boreux; Julia Born; Michael J. Lawes
Agronomy for Sustainable Development | 2016
Virginie Boreux; Philippe Vaast; Lavin P. Madappa; Kushalappa G. Cheppudira; Claude A. Garcia; Jaboury Ghazoul