Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Virginie Ducrot is active.

Publication


Featured researches published by Virginie Ducrot.


Environmental Toxicology and Chemistry | 2011

Toxicokinetic‐toxicodynamic modeling of quantal and graded sublethal endpoints: A brief discussion of concepts

Roman Ashauer; Annika Agatz; Carlo Albert; Virginie Ducrot; Nika Galic; Jan C.M. Hendriks; Tjalling Jager; Andreas Kretschmann; Isabel O'Connor; M.N. Rubach; Anna Maija Nyman; Walter Schmitt; Julita Stadnicka; Paul J. Van den Brink; Thomas G. Preuss

We report on the advantages and problems of using toxicokinetic-toxicodynamic (TKTD) models for the analysis, understanding, and simulation of sublethal effects. Only a few toxicodynamic approaches for sublethal effects are available. These differ in their effect mechanism and emphasis on linkages between endpoints. We discuss how the distinction between quantal and graded endpoints and the type of linkage between endpoints can guide model design and selection. Strengths and limitations of two main approaches and possible ways forward are outlined.


Aquatic Toxicology | 2003

Modelling toxicity and mode of action of chemicals to analyse growth and emergence tests with the midge Chironomus riparius

Alexandre R.R. Péry; Virginie Ducrot; Raphaël Mons; Jeanne Garric

We present a new growth test data analysis for toxicity tests with the midge Chironomus riparius. The analysis is based on mathematical models which proved to be able to predict growth and emergence of non-exposed organisms for diverse feeding levels or densities. Here, we adapt these models to account for toxicity. We distinguish between two modes of action of the compounds: decrease of feeding or increase of growth energy costs. The models are used to analyse growth data with organisms exposed to copper spiked artificial sediments. Both models provide a good fitting of the data in the case of feeding ad libitum, but only the growth costs model can account for effects of copper in the case of food limitation. We also show that the threshold of effects do not depend on the age (the no effect concentrations (NOEC) are 6, 7 and 9 mg/kg, respectively, for second, third and fourth instars larvae), but that, as soon as this threshold is exceeded, fourth instar larvae are less affected by copper than earlier larvae. Our models constitute a step towards a more biologically relevant analysis of standardized tests, which should facilitate both the understanding of the mechanisms of toxicity and the change of scale from the individual to the population.


Ecotoxicology | 2013

Hormesis on life-history traits: is there such thing as a free lunch?

Tjalling Jager; Alpar Barsi; Virginie Ducrot

The term “hormesis” is used to describe dose–response relationships where the response is reversed between low and high doses of a stressor (generally, stimulation at low doses and inhibition at high ones). A mechanistic explanation is needed to interpret the relevance of such responses, but there does not appear to be a single universal mechanism underlying hormesis. When the endpoint is a life-history trait such as growth or reproduction, a stimulation of the response comes with costs in terms of resources. Organisms have to obey the conservation laws for mass and energy; there is no such thing as a free lunch. Based on the principles of Dynamic Energy Budget theory, we introduce three categories of explanations for hormesis that obey the conservation laws: acquisition (i.e., increasing the input of energy into the individual), allocation (i.e., rearranging the energy flows over various traits) and medication (e.g., the stressor is an essential element or acts as a cure for a disease or infection). In this discussion paper, we illustrate these explanations with cases where they might apply, and elaborate on the potential consequences for field populations.


Environmental Toxicology and Chemistry | 2005

Using aquatic macroinvertebrate species traits to build test batteries for sediment toxicity assessment: Accounting for the diversity of potential biological responses to toxicants

Virginie Ducrot; Philippe Usseglio-Polatera; Alexandre R.R. Péry; Jacques Mouthon; Michel Lafont; Marie-Claude Roger; Jeanne Garric; Jean-François Férard

An original species-selection method for the building of test batteries is presented. This method is based on the statistical analysis of the biological and ecological trait patterns of species. It has been applied to build a macroinvertebrate test battery for the assessment of sediment toxicity, which efficiently describes the diversity of benthic macroinvertebrate biological responses to toxicants in a large European lowland river. First, 109 potential representatives of benthic communities of European lowland rivers were selected from a list of 479 taxa, considering 11 biological traits accounting for the main routes of exposure to a sediment-bound toxicant and eight ecological traits providing an adequate description of habitat characteristics used by the taxa. Second, their biological and ecological trait patterns were compared using coinertia analysis. This comparison allowed the clustering of taxa into groups of organisms that exhibited similar life-history characteristics, physiological and behavioral features, and similar habitat use. Groups exhibited various sizes (7-35 taxa), taxonomic compositions, and biological and ecological features. Main differences among group characteristics concerned morphology, substrate preferendum and habitat utilization, nutritional features, maximal size, and life-history strategy. Third, the best representatives of the mean biological and ecological characteristics of each group were included in the test battery. The final selection was composed of Chironomus riparius (Insecta: Diptera), Branchiura sowerbyi (Oligochaeta: Tubificidae), Lumbriculus variegatus (Oligochaeta: Lumbriculidae), Valvata piscinalis (Gastropoda: Valvatidae), and Sericostoma personatum (Trichoptera: Sericostomatidae). This approach permitted the biological and ecological variety of the battery to be maximized. Because biological and ecological traits of taxa determine species sensitivity, such maximization should permit the battery to better account for the sensitivity range within a community.


Ecotoxicology | 2012

Juvenile food limitation in standardized tests: a warning to ecotoxicologists

Elke I. Zimmer; Tjalling Jager; Virginie Ducrot; Laurent Lagadic; S.A.L.M. Kooijman

Standard ecotoxicological tests are as simple as possible and food sources are mainly chosen for practical reasons. Since some organisms change their food preferences during the life-cycle, they might be food limited at some stage if we do not account for such a switch. As organisms tend to respond more sensitively to toxicant exposure under food limitation, the interpretation of test results may then be biased. Using a reformulation of the von Bertalanffy model to analyze growth data of the pond snail Lymnaea stagnalis, we detected food limitation in the early juvenile phase. The snails were held under conditions proposed for a standardized test protocol, which prescribes lettuce as food source. Additional experiments showed that juveniles grow considerably faster when fed with fish flakes. The model is based on Dynamic Energy Budget (DEB) theory, which allows for mechanistic interpretation of toxic effects in terms of changes in energy allocation. In a simulation study with the DEB model, we compared the effects of three hypothetical toxicants in different feeding situations. The initial food limitation when fed with lettuce always intensified the effect of the toxicants. When fed with fish flakes, the predicted effect of the toxicants was less pronounced. From this study, we conclude that (i) the proposed test conditions for L. stagnalis are not optimal, and require further investigation, (ii) fish flakes are a better food source for juvenile pond snails than lettuce, (iii) analyzing data with a mechanistic modeling approach such as DEB allows identifying deviations from constant conditions, (iv) being unaware of food limitation in the laboratory can lead to an overestimation of toxicity in ecotoxicological tests.


Regulatory Toxicology and Pharmacology | 2014

Development and validation of an OECD reproductive toxicity test guideline with the pond snail Lymnaea stagnalis (Mollusca, Gastropoda)

Virginie Ducrot; Clare Askem; Didier Azam; Denise Brettschneider; Rebecca J. Brown; Sandrine Charles; Maïra Coke; Marc Collinet; Marie Laure Delignette-Muller; Carole Forfait-Dubuc; Henrik Holbech; Thomas H. Hutchinson; Arne Jach; Karin Lund Kinnberg; Cédric Lacoste; Gareth Le Page; Peter Matthiessen; Jörg Oehlmann; Lynsey Rice; Edward Roberts; Katharina Ruppert; Jessica Elphinstone Davis; Clemence Veauvy; Lennart Weltje; Ruth Wortham; Laurent Lagadic

The OECD test guideline development program has been extended in 2011 to establish a partial life-cycle protocol for assessing the reproductive toxicity of chemicals to several mollusk species, including the great pond snail Lymnaea stagnalis. In this paper, we summarize the standard draft protocol for a reproduction test with this species, and present inter-comparison results obtained in a 56-day prevalidation ring-test using this protocol. Seven European laboratories performed semi-static tests with cultured snails of the strain Renilys® exposed to nominal concentrations of cadmium chloride (from 53 to 608μgCdL(-1)). Cd concentrations in test solutions were analytically determined to confirm accuracy in the metal exposure concentrations in all laboratories. Physico-chemical and biological validity criteria (namely dissolved oxygen content >60% ASV, water temperature 20±1°C, control snail survival >80% and control snail fecundity >8 egg-masses per snail over the test period) were met in all laboratories which consistently demonstrated the reproductive toxicity of Cd in snails using the proposed draft protocol. Effect concentrations for fecundity after 56days were reproducible between laboratories (68<EC50-56d<124μgL(-1)) and were consistent with literature data. EC50-56d and EC10-56d values were comprised within a factor of 1.8 and 3.6, respectively, which is in the range of acceptable variation defined for reference chemicals in OECD test guidelines for invertebrates. The inter-laboratory reproducibility coefficient of variation (CV) for the Cd LC50-56d values was 8.19%. The inter-laboratory comparison of fecundity within the controls gave a CV of 29.12%, while exposure to Cd gave a CV of 25.49% based on the EC50-56d values. The OECD has acknowledged the success of this prevalidation exercise and a validation ring-test involving 14 laboratories in Europe, North- and South-America is currently being implemented using four chemicals (Cd, prochloraz, trenbolone and tributyltin).


PLOS ONE | 2013

Proteomic Analysis of the Reproductive Organs of the Hermaphroditic Gastropod Lymnaea stagnalis Exposed to Different Endocrine Disrupting Chemicals

Arnaud Giusti; Pierre Leprince; Gabriel Mazzucchelli; Jean-Pierre Thomé; Laurent Lagadic; Virginie Ducrot; Célia Joaquim-Justo

Many studies have reported perturbations of mollusc reproduction following exposure to low concentrations (ng/L range) of endocrine disrupting chemicals (EDCs). However, the mechanisms of action of these molecules on molluscs are still poorly understood. Investigation of the modifications of protein expression in organisms exposed to chemicals using proteomic methods can provide a broader and more comprehensive understanding of adverse impacts of pollution on organisms than conventional biochemical biomarkers (e.g., heat-shock proteins, metallothioneins, GST, EROD). In this study we have investigated the impacts of four chemicals, which exhibit different endocrine disrupting properties in vertebrates, on the proteome of the hermaphroditic freshwater pulmonate gastropod Lymnaea stagnalis after 21 days of exposure. Testosterone, tributyltin, chlordecone and cyproterone acetate were chosen as tested compounds as they can induce adverse effects on the reproduction of this snail. The 2D-DIGE method was used to identify proteins whose expression was affected by these compounds. In addition to modifying the expression of proteins involved in the structure and function of the cytoskeleton, chemicals had impacts on the expression of proteins involved in the reproduction of L. stagnalis. Exposure to 19.2 µg/L of chlordecone increased the abundance of ovipostatin, a peptide transmitted during mating through seminal fluid, which reduces oviposition in this species. The expression of yolk ferritin, the vitellogenin equivalent in L. stagnalis, was reduced after exposure to 94.2 ng Sn/L of tributyltin. The identification of yolk ferritin and the modification of its expression in snails exposed to chemicals were refined using western blot analysis. Our results showed that the tested compounds influenced the abundance of yolk ferritin in the reproductive organs. Alteration in proteins involved in reproductive pathways (e.g., ovipostatin and yolk ferritin) could constitute relevant evidence of interaction of EDCs with reproductive pathways that are under the control of the endocrine system of L. stagnalis.


Science of The Total Environment | 2014

Investigating apical adverse effects of four endocrine active substances in the freshwater gastropod Lymnaea stagnalis

Arnaud Giusti; Laurent Lagadic; Alpar Barsi; Jean-Pierre Thomé; Célia Joaquim-Justo; Virginie Ducrot

The hermaphroditic gastropod Lymnaea stagnalis is proposed as a candidate species for the development of OECD guidelines for testing of the reprotoxicity of chemicals, including endocrine active substances (EASs). Up to now, only a few putative EASs have been tested for their reproductive toxicity in this species. In this study, we investigate the effects of four EASs with different affinities to the vertebrate estrogen and androgen receptors (chlordecone as an estrogen; cyproterone acetate, fenitrothion and vinclozolin as anti-androgens) on the reproduction of L. stagnalis in a 21-day semi-static test. Testosterone and 17α-ethinylestradiol (EE2) were used as the reference compounds. The tested EASs had no significant effect on growth and survival at the tested concentration ranges (ng to μg/L). Classical reproduction endpoints (i.e., oviposition and fecundity) were not responsive to the tested chemicals, except for chlordecone and 17α-ethinylestradiol, which hampered reproduction from 19.6 μg/L and 17.6 μg/L, respectively. The frequency of polyembryonic eggs, used as an additional endpoint, demonstrated the effects of all compounds except EE2. The molecular pathways, which are involved in such reproduction impairments, remain unknown. Our results suggest that egg quality is a more sensitive endpoint as compared to other reproductive endpoints commonly assessed in mollusk toxicity tests.


Scientific Reports | 2016

Modelling survival : exposure pattern, species sensitivity and uncertainty

Roman Ashauer; Carlo Albert; Starrlight Augustine; Nina Cedergreen; Sandrine Charles; Virginie Ducrot; Andreas Focks; Faten Gabsi; André Gergs; Benoit Goussen; Tjalling Jager; Nynke I. Kramer; Anna Maija Nyman; Veronique Poulsen; Stefan Reichenberger; Ralf B. Schäfer; Paul J. Van den Brink; Karin Veltman; Sören Vogel; Elke I. Zimmer; Thomas G. Preuss

The General Unified Threshold model for Survival (GUTS) integrates previously published toxicokinetic-toxicodynamic models and estimates survival with explicitly defined assumptions. Importantly, GUTS accounts for time-variable exposure to the stressor. We performed three studies to test the ability of GUTS to predict survival of aquatic organisms across different pesticide exposure patterns, time scales and species. Firstly, using synthetic data, we identified experimental data requirements which allow for the estimation of all parameters of the GUTS proper model. Secondly, we assessed how well GUTS, calibrated with short-term survival data of Gammarus pulex exposed to four pesticides, can forecast effects of longer-term pulsed exposures. Thirdly, we tested the ability of GUTS to estimate 14-day median effect concentrations of malathion for a range of species and use these estimates to build species sensitivity distributions for different exposure patterns. We find that GUTS adequately predicts survival across exposure patterns that vary over time. When toxicity is assessed for time-variable concentrations species may differ in their responses depending on the exposure profile. This can result in different species sensitivity rankings and safe levels. The interplay of exposure pattern and species sensitivity deserves systematic investigation in order to better understand how organisms respond to stress, including humans.


Philosophical Transactions of the Royal Society B | 2010

Modelling effects of diquat under realistic exposure patterns in genetically differentiated populations of the gastropod Lymnaea stagnalis

Virginie Ducrot; Alexandre R.R. Péry; Laurent Lagadic

Pesticide use leads to complex exposure and response patterns in non-target aquatic species, so that the analysis of data from standard toxicity tests may result in unrealistic risk forecasts. Developing models that are able to capture such complexity from toxicity test data is thus a crucial issue for pesticide risk assessment. In this study, freshwater snails from two genetically differentiated populations of Lymnaea stagnalis were exposed to repeated acute applications of environmentally realistic concentrations of the herbicide diquat, from the embryo to the adult stage. Hatching rate, embryonic development duration, juvenile mortality, feeding rate and age at first spawning were investigated during both exposure and recovery periods. Effects of diquat on mortality were analysed using a threshold hazard model accounting for time-varying herbicide concentrations. All endpoints were significantly impaired at diquat environmental concentrations in both populations. Snail evolutionary history had no significant impact on their sensitivity and responsiveness to diquat, whereas food acted as a modulating factor of toxicant-induced mortality. The time course of effects was adequately described by the model, which thus appears suitable to analyse long-term effects of complex exposure patterns based upon full life cycle experiment data. Obtained model outputs (e.g. no-effect concentrations) could be directly used for chemical risk assessment.

Collaboration


Dive into the Virginie Ducrot's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeanne Garric

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alpar Barsi

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Sandrine Charles

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge