Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Virginie Premel is active.

Publication


Featured researches published by Virginie Premel.


Nature Immunology | 2010

Antimicrobial activity of mucosal-associated invariant T cells

Lionel Le Bourhis; Emmanuel Martin; Isabelle Peguillet; Amélie Guihot; Nathalie Froux; Maxime Coré; Eva Lévy; Mathilde Dusseaux; Vanina Meyssonnier; Virginie Premel; Charlotte Ngo; Béatrice Riteau; Livine Duban; Delphine Robert; Shouxiong Huang; Martin Rottman; Claire Soudais; Olivier Lantz

Mucosal-associated invariant T lymphocytes (MAIT lymphocytes) are characterized by two evolutionarily conserved features: an invariant T cell antigen receptor (TCR) α-chain and restriction by the major histocompatibility complex (MHC)-related protein MR1. Here we show that MAIT cells were activated by cells infected with various strains of bacteria and yeast, but not cells infected with virus, in both humans and mice. This activation required cognate interaction between the invariant TCR and MR1, which can present a bacteria-derived ligand. In humans, we observed considerably fewer MAIT cells in blood from patients with bacterial infections such as tuberculosis. In the mouse, MAIT cells protected against infection by Mycobacterium abscessus or Escherichia coli. Thus, MAIT cells are evolutionarily conserved innate-like lymphocytes that sense and help fight off microbial infection.


Blood | 2011

Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells.

Mathilde Dusseaux; Emmanuel Martin; Nacer Serriari; Isabelle Peguillet; Virginie Premel; Delphine Louis; Maud Milder; Lionel Le Bourhis; Claire Soudais; Emmanuel Treiner; Olivier Lantz

Mucosal-associated invariant T (MAIT) cells are very abundant in humans and have antimicrobial specificity, but their functions remain unclear. MAIT cells are CD161(hi)IL-18Rα(+) and either CD4(-)CD8(-) (DN) or CD8αβ(int) T cells. We now show that they display an effector-memory phenotype (CD45RA(-)CD45RO(+)CD95(hi)CD62L(lo)), and their chemokine receptor expression pattern (CCR9(int)CCR7(-)CCR5(hi)CXCR6(hi)CCR6(hi)) indicates preferential homing to tissues and particularly the intestine and the liver. MAIT cells can represent up to 45% of the liver lymphocytes. They produce interferon-γ and Granzyme-B as well as high levels of interleukin-17 after phorbol myristate acetate + ionomycin stimulation. Most MAIT cells are noncycling cells (< 1% are Ki-67(+)) and express the multidrug resistance transporter (ABCB1). As expected from this phenotype, MAIT cells are more resistant to chemotherapy than other T-cell populations. These features might also allow MAIT cells to resist the xenobiotics potentially secreted by the gut bacteria. We also show that this population does not appear to have antiviral specificity and that CD8 MAIT cells include almost all the ABCB1(+)CD161(hi) CD8 T cells. Together with their already known abundance and antimicrobial specificity, the gut-liver homing characteristics, high expression of ABCB1, and ability to secrete interleukin-17 probably participate in the antibacterial properties of MAIT cells.


PLOS Biology | 2009

Stepwise Development of MAIT Cells in Mouse and Human

Emmanuel Martin; Emmanuel Treiner; Livine Duban; Lucia Guerri; Hélène Laude; Cécile Toly; Virginie Premel; Anne Devys; Ivan C. Moura; Florence Tilloy; Stéphane Cherif; Gabriella Vera; Sylvain Latour; Claire Soudais; Olivier Lantz

Mucosal-associated invariant T (MAIT) cells display two evolutionarily conserved features: an invariant T cell receptor (TCR)α (iTCRα) chain and restriction by the nonpolymorphic class Ib major histocompatibility complex (MHC) molecule, MHC-related molecule 1 (MR1). MR1 expression on thymus epithelial cells is not necessary for MAIT cell development but their accumulation in the gut requires MR1 expressing B cells and commensal flora. MAIT cell development is poorly known, as these cells have not been found in the thymus so far. Herein, complementary human and mouse experiments using an anti-humanVα7.2 antibody and MAIT cell-specific iTCRα and TCRβ transgenic mice in different genetic backgrounds show that MAIT cell development is a stepwise process, with an intra-thymic selection followed by peripheral expansion. Mouse MAIT cells are selected in an MR1-dependent manner both in fetal thymic organ culture and in double iTCRα and TCRβ transgenic RAG knockout mice. In the latter mice, MAIT cells do not expand in the periphery unless B cells are added back by adoptive transfer, showing that B cells are not required for the initial thymic selection step but for the peripheral accumulation. In humans, contrary to natural killer T (NKT) cells, MAIT cells display a naïve phenotype in the thymus as well as in cord blood where they are in low numbers. After birth, MAIT cells acquire a memory phenotype and expand dramatically, up to 1%–4% of blood T cells. Finally, in contrast with NKT cells, human MAIT cell development is independent of the molecular adaptor SAP. Interestingly, mouse MAIT cells display a naïve phenotype and do not express the ZBTB16 transcription factor, which, in contrast, is expressed by NKT cells and the memory human MAIT cells found in the periphery after birth. In conclusion, MAIT cells are selected by MR1 in the thymus on a non-B non-T hematopoietic cell, and acquire a memory phenotype and expand in the periphery in a process dependent both upon B cells and the bacterial flora. Thus, their development follows a unique pattern at the crossroad of NKT and γδ T cells.


PLOS Pathogens | 2013

MAIT cells detect and efficiently lyse bacterially-infected epithelial cells.

Lionel Le Bourhis; Mathilde Dusseaux; Armelle Bohineust; Stéphanie Bessoles; Emmanuel Martin; Virginie Premel; Maxime Coré; David Sleurs; Nacer-Eddine Serriari; Emmanuel Treiner; Claire Hivroz; Philippe J. Sansonetti; Marie-Lise Gougeon; Claire Soudais; Olivier Lantz

Mucosal associated invariant T cells (MAIT) are innate T lymphocytes that detect a large variety of bacteria and yeasts. This recognition depends on the detection of microbial compounds presented by the evolutionarily conserved major-histocompatibility-complex (MHC) class I molecule, MR1. Here we show that MAIT cells display cytotoxic activity towards MR1 overexpressing non-hematopoietic cells cocultured with bacteria. The NK receptor, CD161, highly expressed by MAIT cells, modulated the cytokine but not the cytotoxic response triggered by bacteria infected cells. MAIT cells are also activated by and kill epithelial cells expressing endogenous levels of MRI after infection with the invasive bacteria Shigella flexneri. In contrast, MAIT cells were not activated by epithelial cells infected by Salmonella enterica Typhimurium. Finally, MAIT cells are activated in human volunteers receiving an attenuated strain of Shigella dysenteriae-1 tested as a potential vaccine. Thus, in humans, MAIT cells are the most abundant T cell subset able to detect and kill bacteria infected cells.


Journal of Clinical Investigation | 2015

Mucosal-associated invariant T cell–rich congenic mouse strain allows functional evaluation

Yue Cui; Katarzyna Franciszkiewicz; Yvonne Mburu; Stanislas Mondot; Lionel Le Bourhis; Virginie Premel; Emmanuel Martin; Alexandra Kachaner; Livine Duban; Molly A. Ingersoll; Sylvie Rabot; Jean Jaubert; Jean-Pierre de Villartay; Claire Soudais; Olivier Lantz

Mucosal-associated invariant T cells (MAITs) have potent antimicrobial activity and are abundant in humans (5%-10% in blood). Despite strong evolutionary conservation of the invariant TCR-α chain and restricting molecule MR1, this population is rare in laboratory mouse strains (≈0.1% in lymphoid organs), and lack of an appropriate mouse model has hampered the study of MAIT biology. Herein, we show that MAITs are 20 times more frequent in clean wild-derived inbred CAST/EiJ mice than in C57BL/6J mice. Increased MAIT frequency was linked to one CAST genetic trait that mapped to the TCR-α locus and led to higher usage of the distal Vα segments, including Vα19. We generated a MAIThi congenic strain that was then crossed to a transgenic Rorcgt-GFP reporter strain. Using this tool, we characterized polyclonal mouse MAITs as memory (CD44+) CD4-CD8lo/neg T cells with tissue-homing properties (CCR6+CCR7-). Similar to human MAITs, mouse MAITs expressed the cytokine receptors IL-7R, IL-18Rα, and IL-12Rβ and the transcription factors promyelocytic leukemia zinc finger (PLZF) and RAR-related orphan receptor γ (RORγt). Mouse MAITs produced Th1/2/17 cytokines upon TCR stimulation and recognized a bacterial compound in an MR1-dependent manner. During experimental urinary tract infection, MAITs migrated to the bladder and decreased bacterial load. Our study demonstrates that the MAIThi congenic strain allows phenotypic and functional characterization of naturally occurring mouse MAITs in health and disease.


Journal of Immunology | 2010

Long Peptide Vaccination Can Lead to Lethality through CD4+ T Cell-Mediated Cytokine Storm

Hiroshi Kitamura; Christine Sedlik; Alexandra Jacquet; Bruno Zaragoza; Mathilde Dusseaux; Virginie Premel; Xavier Sastre-Garau; Olivier Lantz

The optimization of anticancer therapeutic vaccines can lead to better efficacy but also to stronger adverse effects. In a mouse model of antitumor vaccination using a long peptide (LP), which included MHC class I- and II-restricted male (H-Y) epitopes, we observed unexpected mortality. Mice with an increased frequency of anti–H-Y CD4 T cells were primed with LP+CpG and boosted 10 d later. Within hours of boost, they displayed shock-like signs with high mortality. Serum cytokine levels were high. TNF-α secreted by the CD4 T cells was identified as the key effector molecule. Priming with a short peptide (SP), which included the MHC class II-restricted epitope, was a more efficient primer than LP, but did not lead to mortality when used as boost. The high mortality induced by LP compared with SP was probably related to its specific ability to be presented by B cells. Finally, targeting the LP sequence to dendritic cells allowed tumor protection without side effects. Our data: 1) confirm that the immune system can be very dangerous; 2) caution against the use of systemic activation of high-frequency Ag-specific T cells as induced by high doses of LP; and 3) underline the benefit of targeting Ag to dendritic cells.


Journal of Immunology | 2013

Analysis of APC Types Involved in CD4 Tolerance and Regulatory T Cell Generation Using Reaggregated Thymic Organ Cultures

Lucia Guerri; Isabelle Peguillet; Yvette Geraldo; Sabrina Nabti; Virginie Premel; Olivier Lantz

Tolerance to self-Ags is generated in the thymus. Both epithelial and hematopoietic thymic stromal cells play an active and essential role in this process. However, the role of each of the various stromal cell types remains unresolved. To our knowledge, we describe the first comparative analysis of several types of thymic hematopoietic stromal cells (THSCs) for their ability to induce CD4 tolerance to self, in parallel with the thymic epithelium. The THSCs—two types of conventional dendritic cells (cDCs), plasmacytoid dendritic cells, macrophages (MΦs), B lymphocytes, and eosinophils—were first characterized and quantified in adult mouse thymus. They were then examined in reaggregated thymic organ cultures containing mixtures of monoclonal and polyclonal thymocytes. This thymocyte mixture allows for the analysis of Ag-specific events while avoiding the extreme skewing frequently seen in purely monoclonal systems. Our data indicate that thymic epithelium alone is capable of promoting self-tolerance by eliminating autoreactive CD4 single-positive thymocytes and by supporting regulatory T cell (Treg) development. We also show that both non-Treg CD4 single-positive thymocytes and Tregs are efficiently deleted by the two populations of cDCs present in the thymus, as well as to a lesser extent by MΦs. Plasmacytoid dendritic cells, B lymphocytes, and eosinophils were not able to do so. Finally, cDCs were also the most efficient THSCs at supporting Treg development in the thymus, suggesting that although they may share some characteristics required for negative selection with MΦs, they do not share those required for the support of Treg development, making cDCs a unique cell subset in the thymus.


Cancer Research | 2006

Intratumor CD4 T-Cell Accumulation Requires Stronger Priming than for Expansion and Lymphokine Secretion

Nathalie T. Joncker; Julie Helft; Alexandra Jacquet; Virginie Premel; Olivier Lantz

T cells need to migrate to and accumulate inside tumors before mediating rejection of the tumor. The number of specific T cells inside tumors may depend on the efficiency of priming in the draining lymph node (DLN), intratumor deletion, suppressive phenomena, or both. We used monoclonal anti-male antigen CD4 (Marilyn) T cells and tumor cell lines expressing or not the corresponding antigen (Dby) to analyze CD4 T-cell accumulation in tumors. Priming by MHC II(+) or MHC II(-) male splenocytes or Dby(+) tumor cells induced similar Marilyn T-cell expansion in the DLN and recirculation in other lymph nodes and capacity to produce IFN-gamma. However, intratumor accumulation was different for each priming condition. In mice with Dby(-) tumors, MHC II(+) male splenocyte priming induced greater, although not statistically significant, Marilyn T-cell accumulation in the tumors than MHC II(-) male splenocyte priming. In mice with Dby(+) tumors, priming in the tumor DLN induced less Marilyn T-cell intratumor accumulation than priming by MHC II(+) male splenocytes. We saw comparable differences for Marilyn T-cell accumulation in gut lamina propria, suggesting that priming affects effector T-cell accumulation in inflamed tissues. Mature dendritic cells were loaded with graded doses of Dby peptide to control for antigen-presenting cell characteristics during priming. We observed similar proliferation, with higher concentrations inducing higher intratumor accumulation. Thus, intratumor accumulation requires stronger stimulation than for proliferation or the capacity to secrete lymphokines. In this system, priming intensity alone can explain the number of intratumor T cells without having to call for intratumor deletion or suppression phenomena.


Journal of Immunology | 2015

Modeling the Specific CD4+ T Cell Response against a Tumor Neoantigen

Héloı̈se Flament; Ruby Alonso Ramirez; Virginie Premel; Nathalie T. Joncker; Alexandra Jacquet; Suzy Scholl; Olivier Lantz

The antitumor activity of CD4+ T cells is increasingly acknowledged in both humans and mice. The involved mechanisms have been mostly studied using transplanted tumor mouse systems. In these models, many tumor cells die at the time of implantation leading to the release of Ag in an inflammatory context contrasting with the slow and nondestructive growth of early-stage human tumors. In this study, we show that the presentation of a MHC class II–restricted model Ag (male, DBY) released by dying tumor cells may last more than 4 wk. The duration of Ag presentation varies according to the way the cells are killed before implantation. To avoid this artifactual early priming of the host precluding the study of the interactions between the immune system and tumors at the steady state, we generated a cell line expressing the DBY Ag in an inducible manner. Ag expression can be efficiently induced in vivo several days after tumor implantation. We show that the Ag reaches the lymph node and activates naive CD4+ T cells to proliferate and recirculate. We did not observe de novo induction of tumor-specific regulatory T cells. However, we observed Th1/Th17 effector cells in the tumor draining lymph node and tumors. Thus, when a neoantigen appears in established tumors, the immune system is not ignorant and naive CD4+ T cells are not tolerized. This opens up the possibility of therapeutic vaccines improving the immune response toward tumor-specific neoantigens.


Journal of Immunology | 2017

Correction: Modeling the Specific CD4+ T cell Response against a Tumor Neoantigen

Héloïse Flament; Ruby Alonso Ramirez; Virginie Premel; Nathalie T. Joncker; Alexandra Jacquet; Suzy Scholl; Olivier Lantz

Flament, H., R. A. Ramirez, V. Premel, N. T. Joncker, A. Jacquet, S. Scholl, and O. Lantz. 2015. Modeling the specific CD4+ T cell response against a tumor neoantigen. J. Immunol. 194: [3501–3512][1]. The authors wish to correct an error made in the preparation of Fig. 6. A panel from Fig. 6B

Collaboration


Dive into the Virginie Premel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge